Unknown

Dataset Information

0

The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles.


ABSTRACT: BACKGROUND: Today it is widely accepted that plastids are of cyanobacterial origin. During their evolutionary integration into the metabolic and regulatory networks of the host cell the engulfed cyanobacteria lost their independency. This process was paralleled by a massive gene transfer from symbiont to the host nucleus challenging the development of a retrograde protein translocation system to ensure plastid functionality. Such a system includes specific targeting signals of the proteins needed for the function of the plastid and membrane-bound machineries performing the transfer of these proteins across the envelope membranes. At present, most information on protein translocation is obtained by the analysis of land plants. However, the analysis of protein import into the primitive plastids of glaucocystophyte algae, revealed distinct features placing this system as a tool to understand the evolutionary development of translocation systems. Here, bacterial outer membrane proteins of the Omp85 family have recently been discussed as evolutionary seeds for the development of translocation systems. RESULTS: To further explore the initial mode of protein translocation, the observed phenylalanine dependence for protein translocation into glaucophyte plastids was pursued in detail. We document that indeed the phenylalanine has an impact on both, lipid binding and binding to proteoliposomes hosting an Omp85 homologue. Comparison to established import experiments, however, unveiled a major importance of the phenylalanine for recognition by Omp85. This finding is placed into the context of the evolutionary development of the plastid translocon. CONCLUSION: The phenylalanine in the N-terminal domain signs as a prerequisite for protein translocation across the outer membrane assisted by a "primitive" translocon. This amino acid appears to be optimized for specifically targeting the Omp85 protein without enforcing aggregation on the membrane surface. The phenylalanine has subsequently been lost in the transit sequence, but can be found at the C-terminal position of the translocating pore. Thereby, the current hypothesis of Omp85 being the prokaryotic contribution to the ancestral Toc translocon can be supported.

SUBMITTER: Wunder T 

PROVIDER: S-EPMC2222254 | biostudies-literature | 2007

REPOSITORIES: biostudies-literature

altmetric image

Publications

The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles.

Wunder Tobias T   Martin Roman R   Löffelhardt Wolfgang W   Schleiff Enrico E   Steiner Jürgen M JM  

BMC evolutionary biology 20071128


<h4>Background</h4>Today it is widely accepted that plastids are of cyanobacterial origin. During their evolutionary integration into the metabolic and regulatory networks of the host cell the engulfed cyanobacteria lost their independency. This process was paralleled by a massive gene transfer from symbiont to the host nucleus challenging the development of a retrograde protein translocation system to ensure plastid functionality. Such a system includes specific targeting signals of the protein  ...[more]

Similar Datasets

| S-EPMC1815389 | biostudies-literature
| S-EPMC3158144 | biostudies-other
| S-EPMC3405695 | biostudies-literature
| S-EPMC5949997 | biostudies-literature
| S-EPMC521957 | biostudies-literature
| S-EPMC9117890 | biostudies-literature
| S-EPMC3188680 | biostudies-literature
| S-EPMC5496848 | biostudies-literature
| S-EPMC2267228 | biostudies-literature
| S-EPMC2878562 | biostudies-literature