Unknown

Dataset Information

0

Gene-expression patterns reveal underlying biological processes in Kawasaki disease.


ABSTRACT:

Background

Kawasaki disease (KD) is an acute self-limited vasculitis and the leading cause of acquired heart disease in children in developed countries. No etiologic agent(s) has been identified, and the processes that mediate formation of coronary artery aneurysms and abatement of fever following treatment with intravenous immunoglobulin (IVIG) remain poorly understood.

Results

In an initial survey, we used DNA microarrays to examine patterns of gene expression in peripheral whole blood from 20 children with KD; each was sampled during the acute, subacute, and convalescent phases of the illness. Acute KD was characterized by increased relative abundance of gene transcripts associated with innate immune and proinflammatory responses and decreased abundance of transcripts associated with natural killer cells and CD8+ lymphocytes. There was significant temporal variation in transcript levels during the acute disease phase and stabilization thereafter. We confirmed these temporal patterns in a second cohort of 64 patients, and identified additional inter-individual differences in transcript abundance. Notably, higher levels of transcripts of the gene for carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) were associated with an increased percentage of unsegmented neutrophils, fewer days of illness, higher levels of C-reactive protein, and subsequent non-response to IVIG; this last association was confirmed by quantitative reverse transcription PCR in a third cohort of 33 patients, and was independent of day of illness.

Conclusion

Acute KD is characterized by dynamic and variable gene-expression programs that highlight the importance of neutrophil activation state and apoptosis in KD pathogenesis. Our findings also support the feasibility of extracting biomarkers associated with clinical prognosis from gene-expression profiles of individuals with systemic inflammatory illnesses.

SUBMITTER: Popper SJ 

PROVIDER: S-EPMC2246263 | biostudies-literature | 2007

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gene-expression patterns reveal underlying biological processes in Kawasaki disease.

Popper Stephen J SJ   Shimizu Chisato C   Shike Hiroko H   Kanegaye John T JT   Newburger Jane W JW   Sundel Robert P RP   Brown Patrick O PO   Burns Jane C JC   Relman David A DA  

Genome biology 20070101 12


<h4>Background</h4>Kawasaki disease (KD) is an acute self-limited vasculitis and the leading cause of acquired heart disease in children in developed countries. No etiologic agent(s) has been identified, and the processes that mediate formation of coronary artery aneurysms and abatement of fever following treatment with intravenous immunoglobulin (IVIG) remain poorly understood.<h4>Results</h4>In an initial survey, we used DNA microarrays to examine patterns of gene expression in peripheral whol  ...[more]

Similar Datasets

2007-12-13 | GSE9873 | GEO
| S-EPMC8283206 | biostudies-literature
| S-EPMC9106343 | biostudies-literature
| S-EPMC11275835 | biostudies-literature
| S-EPMC7818270 | biostudies-literature
| S-EPMC7653997 | biostudies-literature
2016-01-20 | GSE59630 | GEO
2019-03-17 | GSE128409 | GEO
| S-EPMC10980062 | biostudies-literature
2019-11-06 | GSE138240 | GEO