A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism.
Ontology highlight
ABSTRACT: Phosphate homeostasis is central to diverse physiologic processes including energy homeostasis, formation of lipid bilayers, and bone formation. Reduced phosphate levels due to excessive renal loss cause hypophosphatemic rickets, a disease characterized by prominent bone defects; conversely, hyperphosphatemia, a major complication of renal failure, is accompanied by parathyroid hyperplasia, hyperparathyroidism, and osteodystrophy. Here, we define a syndrome featuring both hypophosphatemic rickets and hyperparathyroidism due to parathyroid hyperplasia as well as other skeletal abnormalities. We show that this disease is due to a de novo translocation with a breakpoint adjacent to alpha-Klotho, which encodes a beta-glucuronidase, and is implicated in aging and regulation of FGF signaling. Plasma alpha-Klotho levels and beta-glucuronidase activity are markedly increased in the affected patient; unexpectedly, the circulating FGF23 level is also markedly elevated. These findings suggest that the elevated alpha-Klotho level mimics aspects of the normal response to hyperphosphatemia and implicate alpha-Klotho in the selective regulation of phosphate levels and in the regulation of parathyroid mass and function; they also have implications for the pathogenesis and treatment of renal osteodystrophy in patients with kidney failure.
SUBMITTER: Brownstein CA
PROVIDER: S-EPMC2265125 | biostudies-literature | 2008 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA