The key mimetic features of hoverflies through avian eyes.
Ontology highlight
ABSTRACT: Batesian mimicry occurs when a palatable species (the mimic) gains protection from predators by resembling an unpalatable or otherwise protected species (the model). While some mimetic species resemble their models closely, other species ('imperfect mimics') are thought to bear only a crude likeness. In an earlier study, pigeons (Columba livia) were trained to recognize wasp images in one experiment and non-mimetic (NM) fly images in another by rewarding the pigeons for pecking on the respective image types. These pigeons were subsequently presented with different images, including seemingly wasp-like hoverfly species, and the recorded peck rates on these images were used as a measure of the pigeons' perception of the hoverflies' mimetic similarity. To identify a candidate set of morphological features that the pigeons used when assessing this mimetic similarity, we first extracted a range of biometrical measurements from images originally presented to the pigeons. We then repeatedly optimized an empirical model in an attempt to match the recorded pigeon peck rates while using as few biometrical features as input as possible. Our models were able to fit the pigeon peck rates with considerable accuracy even while excluding many input features. Antennal length, a feature commonly used to discriminate between flies and wasps, was regularly retained as an input variable, but overall a different set of biometrical features was important for predicting the peck rates of pigeons rewarded for identifying wasps compared to those rewarded for identifying NM flies. In highlighting the importance of specific biometrical features in promoting mimicry and the irrelevance of others, our optimized models provide an explanation as to why certain species that appear to be poor mimics to humans are judged to be good mimics by birds.
SUBMITTER: Bain RS
PROVIDER: S-EPMC2275351 | biostudies-literature | 2007 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA