Unknown

Dataset Information

0

Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing.


ABSTRACT: Ire1 is an ancient transmembrane sensor of ER stress with dual protein kinase and ribonuclease activities. In response to ER stress, Ire1 catalyzes the splicing of target mRNAs in a spliceosome-independent manner. We have determined the crystal structure of the dual catalytic region of Ire1at 2.4 A resolution, revealing the fusion of a domain, which we term the KEN domain, to the protein kinase domain. Dimerization of the kinase domain composes a large catalytic surface on the KEN domain which carries out ribonuclease function. We further show that signal induced trans-autophosphorylation of the kinase domain permits unfettered binding of nucleotide, which in turn promotes dimerization to compose the ribonuclease active site. Comparison of Ire1 to a topologically disparate ribonuclease reveals the convergent evolution of their catalytic mechanism. These findings provide a basis for understanding the mechanism of action of RNaseL and other pseudokinases, which represent 10% of the human kinome.

SUBMITTER: Lee KP 

PROVIDER: S-EPMC2276645 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC549064 | biostudies-literature
| S-EPMC3149027 | biostudies-literature
| S-EPMC6344849 | biostudies-other
| S-EPMC3326519 | biostudies-literature
| S-EPMC3988810 | biostudies-literature
| S-EPMC4948327 | biostudies-literature
| S-EPMC8073995 | biostudies-literature
2019-07-30 | PXD012007 | Pride
| S-EPMC3948165 | biostudies-literature
| S-EPMC6734145 | biostudies-literature