Molecular analysis as an aid to assess the public health risk of non-O157 Shiga toxin-producing Escherichia coli strains.
Ontology highlight
ABSTRACT: Shiga toxin-producing Escherichia coli (STEC) strains are commensal bacteria in cattle with high potential for environmental and zoonotic transmission to humans. Although O157:H7 is the most common STEC serotype, there is growing concern over the emergence of more than 200 highly virulent non-O157 STEC serotypes that are globally distributed, several of which are associated with outbreaks and/or severe human illness such as hemolytic-uremic syndrome (HUS) and hemorrhagic colitis. At present, the underlying genetic basis of virulence potential in non-O157 STEC is unknown, although horizontal gene transfer and the acquisition of new pathogenicity islands are an expected origin. We used seropathotype classification as a framework to identify genetic elements that distinguish non-O157 STEC strains posing a serious risk to humans from STEC strains that are not associated with severe and epidemic disease. We report the identification of three genomic islands encoding non-LEE effector (nle) genes and 14 individual nle genes in non-O157 STEC strains that correlate independently with outbreak and HUS potential in humans. The implications for transmissible zoonotic spread and public health are discussed. These results and methods offer a molecular risk assessment strategy to rapidly recognize and respond to non-O157 STEC strains from environmental and animal sources that might pose serious public health risks to humans.
SUBMITTER: Coombes BK
PROVIDER: S-EPMC2292595 | biostudies-literature | 2008 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA