Unknown

Dataset Information

0

Glycosyltransferase efficiently controls phenylpropanoid pathway.


ABSTRACT: BACKGROUND: In a previous study, anthocyanin levels in potato plants were increased by manipulating genes connected with the flavonoid biosynthesis pathway. However, starch content and tuber yield were dramatically reduced in the transgenic plants, which over-expressed dihydroflavonol reductase (DFR). RESULTS: Transgenic plants over-expressing dihydroflavonol reductase (DFR) were subsequently transformed with the cDNA coding for the glycosyltransferase (UGT) of Solanum sogarandinum in order to obtain plants with a high anthocyanin content without reducing tuber yield and quality. Based on enzyme studies, the recombinant UGT is a 7-O-glycosyltransferase whose natural substrates include both anthocyanidins and flavonols such as kaempferol and quercetin. In the super-transformed plants, tuber production was much higher than in the original transgenic plants bearing only the transgene coding for DFR, and was almost the same as in the control plants. The anthocyanin level was lower than in the initial plants, but still higher than in the control plants. Unexpectedly, the super-transformed plants also produced large amounts of kaempferol, chlorogenic acid, isochlorogenic acid, sinapic acid and proanthocyanins. CONCLUSION: In plants over-expressing both the transgene for DFR and the transgene for UGT, the synthesis of phenolic acids was diverted away from the anthocyanin branch. This represents a novel approach to manipulating phenolic acids synthesis in plants.

SUBMITTER: Aksamit-Stachurska A 

PROVIDER: S-EPMC2294120 | biostudies-literature | 2008

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glycosyltransferase efficiently controls phenylpropanoid pathway.

Aksamit-Stachurska Anna A   Korobczak-Sosna Alina A   Kulma Anna A   Szopa Jan J  

BMC biotechnology 20080305


<h4>Background</h4>In a previous study, anthocyanin levels in potato plants were increased by manipulating genes connected with the flavonoid biosynthesis pathway. However, starch content and tuber yield were dramatically reduced in the transgenic plants, which over-expressed dihydroflavonol reductase (DFR).<h4>Results</h4>Transgenic plants over-expressing dihydroflavonol reductase (DFR) were subsequently transformed with the cDNA coding for the glycosyltransferase (UGT) of Solanum sogarandinum  ...[more]

Similar Datasets

| S-EPMC4112628 | biostudies-literature
| S-EPMC1151809 | biostudies-literature
| S-EPMC9121011 | biostudies-literature
| S-EPMC11369780 | biostudies-literature
| S-EPMC8747410 | biostudies-literature
| S-EPMC3202988 | biostudies-other
2015-04-18 | GSE67987 | GEO
| S-EPMC5099422 | biostudies-literature
2015-04-18 | E-GEOD-67987 | biostudies-arrayexpress
| S-EPMC2265712 | biostudies-literature