Unknown

Dataset Information

0

Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis.


ABSTRACT: Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome functionality. We find that distinct signaling networks involving glucose-mediated gene repression, derepression, oleate-mediated induction, and peroxisome formation promote stages of the biogenesis pathway. Additionally, separate classes of signaling proteins are responsible for the regulation of peroxisome number and size. These signaling networks specify the requirements of early and late events of peroxisome biogenesis. Among the numerous signaling proteins involved, Pho85p is exceptional, with functional involvements in both gene expression and peroxisome formation. Our study represents the first global study of signaling networks regulating the biogenesis of an organelle.

SUBMITTER: Saleem RA 

PROVIDER: S-EPMC2315675 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide analysis of signaling networks regulating fatty acid-induced gene expression and organelle biogenesis.

Saleem Ramsey A RA   Knoblach Barbara B   Mast Fred D FD   Smith Jennifer J JJ   Boyle John J   Dobson C Melissa CM   Long-O'Donnell Rose R   Rachubinski Richard A RA   Aitchison John D JD  

The Journal of cell biology 20080401 2


Reversible phosphorylation is the most common posttranslational modification used in the regulation of cellular processes. This study of phosphatases and kinases required for peroxisome biogenesis is the first genome-wide analysis of phosphorylation events controlling organelle biogenesis. We evaluate signaling molecule deletion strains of the yeast Saccharomyces cerevisiae for presence of a green fluorescent protein chimera of peroxisomal thiolase, formation of peroxisomes, and peroxisome funct  ...[more]

Similar Datasets

| S-EPMC1559775 | biostudies-literature
| S-EPMC10278152 | biostudies-literature
| S-EPMC9027317 | biostudies-literature
| S-EPMC3302335 | biostudies-literature
| S-EPMC7818636 | biostudies-literature
| S-EPMC1913522 | biostudies-literature
| S-EPMC8388739 | biostudies-literature
| S-EPMC6258005 | biostudies-literature
| S-EPMC4090391 | biostudies-literature
| S-EPMC4976209 | biostudies-literature