Project description:The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this "microbial organ" for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host-microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment.
Project description:The extent and nature of genetic incompatibilities between incipient races and sibling species is of fundamental importance to our view of speciation. However, with the exception of hybrid inviability and sterility factors, little is known about the extent of other, more subtle genetic incompatibilities between incipient species. Here we experimentally demonstrate the prevalence of such genetic incompatibilities between two young allopatric sibling species, Drosophila simulans and D. sechellia. Our experiments took advantage of 12 introgression lines that carried random introgressed D. sechellia segments in different parts of the D. simulans genome. First, we found that these introgression lines did not show any measurable sterility or inviability effects. To study if these sechellia introgressions in a simulans background contained other fitness consequences, we competed and genetically tracked the marked alleles within each introgression against the wild-type alleles for 20 generations. Strikingly, all marked D. sechellia introgression alleles rapidly decreased in frequency in only 6 to 7 generations. We then developed computer simulations to model our competition results. These simulations indicated that selection against D. sechellia introgression alleles was high (average s?=?0.43) and that the marker alleles and the incompatible alleles did not separate in 78% of the introgressions. The latter result likely implies that most introgressions contain multiple genetic incompatibilities. Thus, this study reveals that, even at early stages of speciation, many parts of the genome diverge to a point where introducing foreign elements has detrimental fitness consequences, but which cannot be seen using standard sterility and inviability assays.
Project description:BackgroundDespite a long history of investigation, considerable debate revolves around whether Neanderthals became extinct because of climate change or competition with anatomically modern humans (AMH).Methodology/principal findingsWe apply a new methodology integrating archaeological and chronological data with high-resolution paleoclimatic simulations to define eco-cultural niches associated with Neanderthal and AMH adaptive systems during alternating cold and mild phases of Marine Isotope Stage 3. Our results indicate that Neanderthals and AMH exploited similar niches, and may have continued to do so in the absence of contact.Conclusions/significanceThe southerly contraction of Neanderthal range in southwestern Europe during Greenland Interstadial 8 was not due to climate change or a change in adaptation, but rather concurrent AMH geographic expansion appears to have produced competition that led to Neanderthal extinction.
Project description:Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting resource cannot coexist at constant population densities, or more generally, the number of consumer species in steady coexistence cannot exceed that of resources. The fact that competitive exclusion is rarely observed in natural ecosystems has not been fully understood. Here we show that, by forming chasing pairs and chasing triplets among the consumers and resources in the consumption process, the Competitive Exclusion Principle can be naturally violated. The modeling framework developed here is broadly applicable and can be used to explain the biodiversity of many consumer-resource ecosystems and hence deepens our understanding of biodiversity in nature.
Project description:Fungal entomopathogens are largely facultative parasites and play an important role in controlling the density of insect populations in nature. A few species of these fungi have been used for biocontrol of insect pests. The pattern of the entomopathogen competition for insect individuals is still elusive. Here, we report the empirical competition for hosts or niches between the inter- and intra-species of the entomopathogens Metarhizium robertsii and Beauveria bassiana. It was found that the synergistic effect of coinfection on virulence increase was not evident, and the insects were largely killed and mycosed by M. robertsii independent of its initial co-inoculation dosage and infection order. For example, >90% dead insects were mycosed by M. robertsii even after immersion in a spore suspension with a mixture ratio of 9:1 for B. bassiana versus M. robertsii. The results thus support the pattern of competitive exclusion between insect pathogenic fungi that occurred from outside to inside the insect hosts. Even being inferior to compete for insects, B. bassiana could outcompete M. robertsii during co-culturing in liquid medium. It was also found that the one-sided mycosis of insects occurred during coinfection with different genotypic strains of either fungi. However, parasexual recombination was evident to take place between the compatible strains after coinfection. The data of this study can help explain the phenomena of the exclusive mycosis of insect individuals, but co-occurrence of entomopathogens in the fields, and suggest that the synergistic effect is questionable regarding the mixed use of fungal parasites for insect pest control.
Project description:Anaplasmosis is a costly livestock disease that persists across the United States and the world. While the traditional control options of feed additives, vaccination, and post-infection antibiotic treatments exist, the highly infectious, often asymptomatic onset of anaplasmosis in cattle makes the optimal combination of disease control measures uncertain. Reducing the infection uncertainty through early detection may help producer management decisions and reduce the economic impact of anaplasmosis. To address this, we calculate the costs of applying a range of anaplasmosis control decisions for a representative cow-calf producer in the United States and extend existing analyses to incorporate early detection through diagnostic testing. We use parameters from extant literature, including for mortality, morbidity, and treatment costs to populate a stochastic, dynamic model. Updating the cost estimates finds that production losses account for the majority of anaplasmosis costs, following previous empirical estimates. Using these estimates in our decision model, the outcomes suggest that diagnostic testing with preventative treatments is the optimal herd management strategy. By further framing our findings in the context of three anaplasmosis infection regions in the United States (endemic, disease free, non-endemic buffer), we show that additional considerations exist, which can make sub-optimal control strategies competitive. Our analysis provides an initial exploration of the economic feasibility of diagnostic testing, while helping to assess the burden of anaplasmosis more accurately.
Project description:Naegleria fowleri causes deadly primary amoebic meningoencephalitis (PAM) in humans. Humans obtain the infection by inhaling water or dust contaminated with amebae into the nostrils, wherefrom the pathogen migrates via the olfactory nerve to cause brain inflammation and necrosis. Current PAM treatment is ineffective and toxic. Seeking new effective and less toxic drugs for the environmental control of the amoeba population to reduce human exposure is logical for the management of N. fowleri infection. On the basis of the concept of competitive exclusion, where environmental microorganisms compete for resources by secreting factors detrimental to other organisms, we tested cell-free culture supernatants (CFSs) of three bacteria isolated from a fresh water canal, i.e., Pseudomonas aeruginosa, Pseudomonas otitidis, and Enterobacter cloacae, were tested against N. fowleri. The CFSs inhibited growth and caused morphological changes in N. fowleri. At low dose, N. fowleri trophozoites exposed to P. aeruginosa pyocyanin were seen to shrink and become rounded, while at high dose, the trophozoites were fragmented. While the precise molecular mechanisms of pyocyanin and products of P. otitidis and E. cloacae that also exert anti-N. fowleri activity await clarification. Our findings suggest that P. aeruginosa pyocyanin may have a role in the control of amphizoic N. fowleri in the environment.
Project description:Density-dependence is a term used in ecology to describe processes such as birth and death rates that are regulated by the number of individuals in a population. Evolutionary biologists have borrowed the term to describe decreasing rates of species accumulation, suggesting that speciation and extinction rates depend on the total number of species in a clade. If this analogy with ecological density-dependence holds, diversification of clades is restricted because species compete for limited resources. We hypothesize that such competition should not only affect numbers of species, but also prevent species from being phenotypically similar. Here, we present a method to detect whether competitive interactions between species have ordered phenotypic traits on a phylogeny, assuming that competition prevents related species from having identical trait values. We use the method to analyze clades of birds and mammals, with body size as the phenotypic trait. We find no sign that competition has prevented species from having the same body size. Thus, since body size is a key ecological trait and competition does not seem to be responsible for differences in body size between species, we conclude that the diversification slowdown that is prevalent in these clades is unlikely due to the ecological interference implied by the term density dependence.
Project description:Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.
Project description:A colonization model provides a useful basis to investigate a role of interspecific competition in species diversity. The model formulates colonization processes of propagules competing for spatially distinct habitats, which is known to result in stable coexistence of multiple species under various trade-off, for example, competition-colonization and fecundity-mortality trade-offs. Based on this model, we propose a new theory to explain patterns of species abundance, assuming a trade-off between competitive ability and fecundity among species. This model makes testable predictions about species positions in the rank abundance diagram under a discrete species competitiveness. The predictions were tested by three data of animal communities, which supported our model, suggesting the importance of interspecific competition in community structure. Our approach provides a new insight into understanding a mechanism of species diversity.