Unknown

Dataset Information

0

Glia maturation factor overexpression in neuroblastoma cells activates glycogen synthase kinase-3beta and caspase-3.


ABSTRACT: In the present study we report that a replication-defective adenovirus construct of GMF cDNA (GMF-V) induced overexpression of GMF protein in neuroblastoma (N18) cells caused cytotoxicity and loss of cell viability. A significant increase in activation of GSK-3beta occurred after infection with GMF-V when compared with mock and lacZ controls. Overexpression of GMF also increased caspase-3 activity, an early marker of apoptosis. Depletion of GMF gene by introducing GMF-specific siRNA (GsiRNA) completely blocked both activation of GSK-3beta and caspase-3 activation whereas a control scrambled siRNA (CsiRNA) had no effect. A cell-permeable peptide inhibitor of GSK-3beta, and lithium completely prevented GMF-dependent activation of caspase-3. These results demonstrate that GSK-3 mediates activation of the death domain caspase by GMF overexpression. We also show that the phosphorylation of GSK-3-dependent site of Tau was a consequence of GMF-overexpression in N18 cells. Taken together our results imply that GMF is involved in the signaling leading to the activation of GSK-3beta and caspase-3 in N18 cells and strongly suggest its involvement in neurodegeneration since GSK-3beta is known to hyperphosphorylate tau which is associated with the neurotoxicity of neurofibrillary tangles in Alzheimer's disease.

SUBMITTER: Zaheer A 

PROVIDER: S-EPMC2343001 | biostudies-literature | 2008 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glia maturation factor overexpression in neuroblastoma cells activates glycogen synthase kinase-3beta and caspase-3.

Zaheer Asgar A   Knight Scott S   Zaheer Ashna A   Ahrens Marcus M   Sahu Shailendra K SK   Yang Baoli B  

Brain research 20071113


In the present study we report that a replication-defective adenovirus construct of GMF cDNA (GMF-V) induced overexpression of GMF protein in neuroblastoma (N18) cells caused cytotoxicity and loss of cell viability. A significant increase in activation of GSK-3beta occurred after infection with GMF-V when compared with mock and lacZ controls. Overexpression of GMF also increased caspase-3 activity, an early marker of apoptosis. Depletion of GMF gene by introducing GMF-specific siRNA (GsiRNA) com  ...[more]

Similar Datasets

| S-EPMC6758727 | biostudies-literature
| S-EPMC2646624 | biostudies-literature
| S-EPMC2820779 | biostudies-literature
| S-EPMC2662023 | biostudies-literature
| S-EPMC1899930 | biostudies-literature
| S-EPMC2681253 | biostudies-literature
| S-EPMC2663310 | biostudies-literature
| S-EPMC5323256 | biostudies-literature
| S-EPMC6730230 | biostudies-literature
| S-EPMC2781676 | biostudies-literature