Unknown

Dataset Information

0

An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L).


ABSTRACT: Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of wheat. Tolerant (M39A-1-6) and intolerant (M77A-1) rye haplotypes contain five and two genes, respectively, of which two (ScALMT1-M39.1 and ScALMT1-M39.2) and one (ScALMT1-M77.1) are highly expressed in the root tip, typically the main site of plant Al tolerance/susceptibility. All three transcripts are upregulated by exposure to Al. High-resolution genetic mapping identified two resistant lines resulting from recombination within the gene cluster. These recombinants exclude all genes flanking the gene cluster as candidates for controlling Alt4 tolerance, including a homolog of the barley HvMATE Al-tolerance gene. In the recombinants, one hybrid gene containing a chimeric open reading frame and the ScALMT1-M39.1 gene each appeared to be sufficient to provide full tolerance. mRNA splice variation was observed for two of the rye ALMT1 genes and in one case, was correlated with a approximately 400-bp insertion in an intron.

SUBMITTER: Collins NC 

PROVIDER: S-EPMC2390642 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L).

Collins N C NC   Shirley N J NJ   Saeed M M   Pallotta M M   Gustafson J P JP  

Genetics 20080501 1


Aluminum toxicity is a major problem in agriculture worldwide. Among the cultivated Triticeae, rye (Secale cereale L.) is one of the most Al tolerant and represents an important potential source of Al tolerance for improvement of wheat. The Alt4 Al-tolerance locus of rye contains a cluster of genes homologous to the single-copy Al-activated malate transporter (TaALMT1) Al-tolerance gene of wheat. Tolerant (M39A-1-6) and intolerant (M77A-1) rye haplotypes contain five and two genes, respectively,  ...[more]

Similar Datasets

| S-EPMC8630102 | biostudies-literature
| S-EPMC4543422 | biostudies-literature
| S-EPMC5243912 | biostudies-literature
| S-EPMC5314639 | biostudies-literature
| S-EPMC4877395 | biostudies-literature
| S-EPMC3273464 | biostudies-literature
| S-EPMC8124178 | biostudies-literature
| S-EPMC6085706 | biostudies-literature
| S-EPMC10171662 | biostudies-literature
| S-EPMC8986816 | biostudies-literature