Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness.
Ontology highlight
ABSTRACT: Recent discoveries have uncovered considerable genetic diversity among aquatic viruses and raised questions about the variability of this diversity within and between environments. Studies of the temporal and spatial dynamics of aquatic viral assemblages have been hindered by the lack of a common genetic marker among viruses for rapid diversity assessments. Randomly amplified polymorphic DNA (RAPD) PCR bypasses this obstacle by sampling at the genetic level without requiring viral isolation or previous sequence knowledge. In this study, the utility of RAPD-PCR for assessing DNA viral richness within Chesapeake Bay water samples was evaluated. RAPD-PCR using single 10-mer oligonucleotide primers successfully produced amplicons from a variety of viral samples, and banding patterns were highly reproducible, indicating that each band likely represents a single amplicon originating from viral template DNA. In agreement with observations from other community profiling techniques, resulting RAPD-PCR banding patterns revealed more temporal than spatial variability in Chesapeake Bay virioplankton assemblages. High-quality hybridization probes and sequence information were also easily generated from single RAPD-PCR products or whole reactions. Thus, the RAPD-PCR technique appears to be practical and efficient for routine use in high-resolution viral diversity studies by providing assemblage comparisons through fingerprinting, probing, or sequence information.
SUBMITTER: Winget DM
PROVIDER: S-EPMC2394873 | biostudies-literature | 2008 May
REPOSITORIES: biostudies-literature
ACCESS DATA