Unknown

Dataset Information

0

Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum.


ABSTRACT: Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to 'biological process' (n = 68), 'cellular component' (n = 50), or 'molecular function' (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein-protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism.

SUBMITTER: Huang CQ 

PROVIDER: S-EPMC2398786 | biostudies-literature | 2008 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum.

Huang Cui-Qin CQ   Gasser Robin B RB   Cantacessi Cinzia C   Nisbet Alasdair J AJ   Zhong Weiwei W   Sternberg Paul W PW   Loukas Alex A   Mulvenna Jason J   Lin Rui-Qing RQ   Chen Ning N   Zhu Xing-Quan XQ  

PLoS neglected tropical diseases 20080618 6


Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and  ...[more]

Similar Datasets

| S-EPMC9194832 | biostudies-literature
| S-EPMC2795607 | biostudies-literature
| S-EPMC1223059 | biostudies-other
| S-EPMC4734507 | biostudies-literature
| S-EPMC4386041 | biostudies-literature
| S-EPMC8395819 | biostudies-literature
| S-EPMC3171522 | biostudies-literature
| S-EPMC2972677 | biostudies-literature
| S-EPMC5691729 | biostudies-literature
| S-EPMC8065839 | biostudies-literature