Project description:Because hepatic stellate cells (HSCs) play a major role in fibrosis, we focused on HSCs as a potential target for the treatment of liver fibrosis. In this study, we attempted to identify drug candidates to inactivate HSCs and found that several proteasome inhibitors (PIs) reduced HSC viability. Our data showed that a second-generation PI, carfilzomib (CZM), suppressed the expression of fibrotic markers in primary murine HSCs at low concentrations of 5 or 10 nM. Since CZM was not toxic to HSCs up to a concentration of 12.5 nM, we examined its antifibrotic effects further. CZM achieved a clear reduction in liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis without worsening of liver injury. Mechanistically, RNA sequence analysis of primary HSCs revealed that CZM inhibits mitosis in HSCs. In the CCl4-injured liver, amphiregulin, which is known to activate mitogenic signaling pathways and fibrogenic activity and is upregulated in murine and human metabolic dysfunction-associated steatohepatitis (MASH), was downregulated by CZM administration, leading to inhibition of mitosis in HSCs. Thus, CZM and next-generation PIs in development could be potential therapeutic agents for the treatment of liver fibrosis via inactivation of HSCs without liver injury.
Project description:Regardless of the source of injury or metabolic dysfunction, fibrosis is a frequent driver of liver pathology. Excessive liver fibrosis is caused by persistent activation of hepatic stellate cells (HSCs), which is defined by myofibroblast activation (MFA) and the epithelial-mesenchymal transition (EMT). Strategies to prevent or reverse this HSC phenotype will be critical for successful treatment of liver fibrosis. We have previously shown that full-term, cell-free human amniotic fluid (cfAF) inhibits MFA and EMT in fibroblasts in vitro. We hypothesize that cfAF treatment can attenuate HSC activation and limit liver fibrosis. We tested if cfAF could prevent liver fibrosis or HSC activation in murine models of liver damage, three-dimensional hepatic spheroids, and HSC cultures. Administering cfAF prevented weight loss and the extent of fibrosis in mice with chronic liver damage without stimulating deleterious immune responses. Gene expression profiling and immunostaining indicated that cfAF administration in carbon tetrachloride-treated mice reduced EMT- and MFA-related biomarker abundance and modulated transcript levels associated with liver metabolism, immune regulatory pathways, and cell signaling. cfAF treatment lowered MFA biomarker levels in a dose-dependent manner in hepatic spheroids exposed to ethanol. Treating HSCs with cfAF in vitro strongly repressed EMT. Multi-omics analyses revealed that it also attenuates TGFβ-induced MFA and inflammation-associated processes. Thus, cfAF treatment prevents liver fibrosis by safeguarding against persistent HSC activation. These findings suggest that cfAF may be a safe and effective therapy for reducing liver fibrosis and preventing the development of cirrhosis and/or hepatocellular carcinoma.
Project description:Molecular targeted agents are pharmacologically used to treat liver fibrosis and have gained increased attention. The present study examined the preventive effect of lenvatinib on experimental liver fibrosis and sinusoidal capillarization as well as the in vitro phenotypes of hepatic stellate cells. LX-2, a human stellate cell line, was used for in vitro studies. In vivo liver fibrosis was induced in F344 rats using carbon tetrachloride by intraperitoneal injection for 8 weeks, and oral administration of lenvatinib was started two weeks after initial injection of carbon tetrachloride. Lenvatinib restrained proliferation and promoted apoptosis of LX-2 with suppressed phosphorylation of extracellular signal-regulated kinase 1/2 and AKT. It also down-regulated COL1A1, ACTA2 and TGFB1 expressions by inhibiting the transforming growth factor-β1/Smad2/3 pathway. Treatment with lenvatinib also suppressed platelet-derived growth factor-BB-stimulated proliferation, chemotaxis and vascular endothelial growth factor-A production, as well as basic fibroblast growth factor-induced LX-2 proliferation. In vivo study showed that lenvatinib attenuated liver fibrosis development with reduction in activated hepatic stellate cells and mRNA expression of profibrogenic markers. Intrahepatic neovascularization was ameliorated with reduced hepatic expressions of Vegf1, Vegf2 and Vegfa in lenvatinib-treated rats. Collectively, these results suggest the potential use of lenvatinib as a novel therapeutic strategy for liver fibrosis.
Project description:UnlabelledRNA-binding proteins (RBPs) play a major role in the control of messenger RNA (mRNA) turnover and translation rates. We examined the role of the RBP, human antigen R (HuR), during cholestatic liver injury and hepatic stellate cell (HSC) activation. HuR silencing attenuated fibrosis development in vivo after BDL, reducing liver damage, oxidative stress, inflammation, and collagen and alpha smooth muscle actin (α-SMA) expression. HuR expression increased in activated HSCs from bile duct ligation mice and during HSC activation in vitro, and HuR silencing markedly reduced HSC activation. HuR regulated platelet-derived growth factor (PDGF)-induced proliferation and migration and controlled the expression of several mRNAs involved in these processes (e.g., Actin, matrix metalloproteinase 9, and cyclin D1 and B1). These functions of HuR were linked to its abundance and cytoplasmic localization, controlled by PDGF, by extracellular signal-regulated kinases (ERK) and phosphatidylinositol 3-kinase activation as well as ERK/LKB1 (liver kinase B1) activation, respectively. More important, we identified the tumor suppressor, LKB1, as a novel downstream target of PDGF-induced ERK activation in HSCs. HuR also controlled transforming growth factor beta (TGF-β)-induced profibrogenic actions by regulating the expression of TGF-β, α-SMA, and p21. This was likely the result of an increased cytoplasmic localization of HuR, controlled by TGF-β-induced p38 mitogen-activated protein kinase activation. Finally, we found that HuR and LKB1 (Ser428) levels were highly expressed in activated HSCs in human cirrhotic samples.ConclusionOur results show that HuR is important for the pathogenesis of liver fibrosis development in the cholestatic injury model, for HSC activation, and for the response of activated HSC to PDGF and TGF-β.
Project description:Liver fibrosis is caused by chronic hepatic injury and may lead to cirrhosis, and even hepatocellular carcinoma. When hepatic stellate cells (HSCs) are activated by liver injury, they transdifferentiate into myofibroblasts, which secrete extracellular matrix proteins that generate the fibrous scar. Therefore, it is extremely urgent to find safe and effective drugs for HSCs activation treatment to prevent liver against fibrosis. Here, we reported that PDZ and LIM domain protein 1 (PDLIM1), a highly conserved cytoskeleton organization regulator, was significantly up-regulated in fibrotic liver tissues and TGF-β-treated HSC-T6 cells. Through transcriptome analysis, we found that knockdown of PDLIM1 resulted in a significant downregulation of genes related to inflammation and immune-related pathways in HSC-T6 cells. Moreover, PDLIM1 knockdown significantly inhibited the activation of HSC-T6 cells and the trans-differentiation of HSC-T6 cells into myofibroblasts. Mechanistically, PDLIM1 is involved in the regulation of TGF-β-mediated signaling pathways in HSCs activation. Thus, targeting PDLIM1 may provide an alternative method to suppress HSCs activation during liver injury. CCCTC-binding factor (CTCF), a master regulator of genome architecture, is upregulated during HSCs activation. PDLIM1 knockdown also indirectly reduced CTCF protein expression, however, CTCF binding to chromatin was not significantly altered by CUT&Tag analysis. We speculate that CTCF may cooperate with PDLIM1 to activate HSCs in other ways. Our results suggest that PDLIM1 can accelerate the activation of HSCs and liver fibrosis progression and could be a potential biomarker for monitoring response to anti-fibrotic therapy.
Project description:Hepatic fibrosis, a common pathological manifestation of chronic liver injury, is generally considered to be the end result of an increase in extracellular matrix produced by activated hepatic stellate cells (HSCs). The aim of the present study was to target the mechanisms underlying HSC activation in order to provide a powerful therapeutic strategy for the prevention and treatment of liver fibrosis. In the present study, a high‑throughput screening assay was established, and the histone deacetylase inhibitor givinostat was identified as a potent inhibitor of HSC activation in vitro. Givinostat significantly inhibited HSC activation in vivo, ameliorated carbon tetrachloride‑induced mouse liver fibrosis and lowered plasma aminotransferases. Transcriptomic analysis revealed the most significantly regulated genes in the givinostat treatment group in comparison with those in the solvent group, among which, dermokine (Dmkn), mesothelin (Msln) and uroplakin‑3b (Upk3b) were identified as potential regulators of HSC activation. Givinostat significantly reduced the mRNA expression of Dmkn, Msln and Upk3b in both a mouse liver fibrosis model and in HSC‑LX2 cells. Knockdown of any of the aforementioned genes inhibited the TGF‑β1‑induced expression of α‑smooth muscle actin and collagen type I, indicating that they are crucial for HSC activation. In summary, using a novel strategy targeting HSC activation, the present study identified a potential epigenetic drug for the treatment of hepatic fibrosis and revealed novel regulators of HSC activation.
Project description:Liver fibrosis is an increasing health problem worldwide, for which no effective antifibrosis drugs are available. Although the involvement of aerobic glycolysis in hepatic stellate cell (HSC) activation has been reported, the role of pyruvate kinase M2 (PKM2) in liver fibrogenesis still remains unknown. We examined PKM2 expression and location in liver tissues and primary hepatic cells. The in vitro and in vivo effects of a PKM2 antagonist (shikonin) and its allosteric agent (TEPP-46) on liver fibrosis were investigated in HSCs and liver fibrosis mouse model. Chromatin immunoprecipitation sequencing and immunoprecipitation were performed to identify the relevant molecular mechanisms. PKM2 expression was significantly up-regulated in both mouse and human fibrotic livers compared with normal livers, and mainly detected in activated, rather than quiescent, HSCs. PKM2 knockdown markedly inhibited the activation and proliferation of HSCs in vitro. Interestingly, the PKM2 dimer, rather than the tetramer, induced HSC activation. PKM2 tetramerization induced by TEPP-46 effectively inhibited HSC activation, reduced aerobic glycolysis, and decreased MYC and CCND1 expression via regulating histone H3K9 acetylation in activated HSCs. TEPP-46 and shikonin dramatically attenuated liver fibrosis in vivo. Our findings demonstrate a nonmetabolic role of PKM2 in liver fibrosis. PKM2 tetramerization or suppression could prevent HSC activation and protects against liver fibrosis.
Project description:A role for the NADPH oxidases NOX1 and NOX2 in liver fibrosis has been proposed, but the implication of NOX4 is poorly understood yet. The aim of this work was to study the functional role of NOX4 in different cell populations implicated in liver fibrosis: hepatic stellate cells (HSC), myofibroblats (MFBs) and hepatocytes. Two different mice models that develop spontaneous fibrosis (Mdr2(-/-)/p19(ARF-/-), Stat3(Δhc)/Mdr2(-/-)) and a model of experimental induced fibrosis (CCl(4)) were used. In addition, gene expression in biopsies from chronic hepatitis C virus (HCV) patients or non-fibrotic liver samples was analyzed. Results have indicated that NOX4 expression was increased in the livers of all animal models, concomitantly with fibrosis development and TGF-β pathway activation. In vitro TGF-β-treated HSC increased NOX4 expression correlating with transdifferentiation to MFBs. Knockdown experiments revealed that NOX4 downstream TGF-β is necessary for HSC activation as well as for the maintenance of the MFB phenotype. NOX4 was not necessary for TGF-β-induced epithelial-mesenchymal transition (EMT), but was required for TGF-β-induced apoptosis in hepatocytes. Finally, NOX4 expression was elevated in patients with hepatitis C virus (HCV)-derived fibrosis, increasing along the fibrosis degree. In summary, fibrosis progression both in vitro and in vivo (animal models and patients) is accompanied by increased NOX4 expression, which mediates acquisition and maintenance of the MFB phenotype, as well as TGF-β-induced death of hepatocytes.
Project description:Orthovanadate (OV), an inhibitor of protein tyrosine phosphatases, affects various biological processes in a cell-type-specific manner. In this study, we investigated the effect of OV on hepatic stellate cells (HSCs). When primary rat HSCs were cultured in the presence of 10% serum, they spontaneously lost characteristic stellate morphology, proliferated, and were transformed into an activated state with the formation of abundant stress fibers and increased expression of both alpha-smooth muscle actin and collagen type I mRNA. OV treatment inhibited proliferation and activation of HSCs and partially reversed the phenotype of activated HSCs. Among the signaling molecules investigated, phosphorylation of the Src protein at tyrosine 416 was the most striking in OV-treated HSCs. Treatment of cells with Src family inhibitors partially abrogated the effects of OV. Furthermore, transfection of v-Src into activated HSCs induced a stellate morphology similar to that in the quiescent state. We then examined whether OV could effectively suppress HSC activation in vivo after liver injury induced by either carbon tetrachloride or dimethylnitrosamine. OV significantly reduced the appearance of alpha-smooth muscle actin-positive cells and decreased collagen deposition, concomitant with an improvement in liver function. Our study showed for the first time that OV was able to suppress the activation of HSCs, possibly through the modulation of Src activity, and attenuated fibrosis after chronic liver injury.
Project description:MicroRNAs (miRNAs) have been demonstrated to modulate cellular processes in the liver. However, the role of miRNAs in liver fibrosis is poorly understood. Because the activation of hepatic stellate cells (HSCs) is a pivotal event in the initiation and progression of hepatic fibrosis, we investigate the differential expression of miRNAs in activated and quiescent rat HSCs by microarray analysis and find that miR-214 (miR-214-3p) is significantly upregulated during HSC activation. Moreover, the robust induction of miR-214 is correlated with liver fibrogenesis in carbon tetrachloride (CCl4)-treated rats and mice, high-fat diet-induced non-alcoholic steatohepatitis in mice, and cirrhosis in humans. We identify that miR-214 expression is driven by the helix-loop-helix transcription factor Twist1 via the E-box element. The increased miR-214 inhibits the expression of suppressor-of-fused homolog (Sufu), a negative regulator of the Hedgehog signaling pathway, thereby contributing to HSC activation to promote the accumulation of fibrous extracellular matrix and the expression of profibrotic genes in HSCs and LX2 cells. Furthermore, miR-214 expression is inversely correlated with the expression of Sufu in clinical cirrhosis samples. To explore the clinical potential of miR-214, we inject antagomiR-214 oligos into mice to induce hepatic fibrosis. The knockdown of miR-214 in vivo enhances Sufu expression and reduces fibrosis marker expression, which ameliorates liver fibrosis in mice. In conclusions, the Twist1-regulated miR-214 promotes the activation of HSC cells through targeting Sufu involved in the Hedgehog pathway and participates in the development of hepatic fibrosis. Hence, the knockdown of miR-214 expression may be a promising therapeutic strategy for liver fibrosis.