Unknown

Dataset Information

0

Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites.


ABSTRACT: In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal specificity could be achieved through identification of immunogenic proteins specific to the Anopheles genus. The objective of the present study was to determine whether the IgG response to the Anopheles gambiae gSG6 protein, from its recombinant form to derived synthetic peptides, could be an immunological marker of exposure specific to Anopheles gambiae bites.Specific IgG antibodies to recombinant gSG6 protein were observed in children living in a Senegalese area exposed to malaria. With the objective of optimizing Anopheles specificity and reproducibility, we designed five gSG6-based peptide sequences using a bioinformatic approach, taking into consideration i) their potential antigenic properties and ii) the absence of cross-reactivity with protein sequences of other arthropods/organisms. The specific anti-peptide IgG antibody response was evaluated in exposed children. The five gSG6 peptides showed differing antigenic properties, with gSG6-P1 and gSG6-P2 exhibiting the highest antigenicity. However, a significant increase in the specific IgG response during the rainy season and a positive association between the IgG level and the level of exposure to Anopheles gambiae bites was significant only for gSG6-P1.This step-by-step approach suggests that gSG6-P1 could be an optimal candidate marker for evaluating exposure to Anopheles gambiae bites. This marker could be employed as a geographic indicator, like remote sensing techniques, for mapping the risk of malaria. It could also represent a direct criterion of efficacy in evaluation of vector control strategies.

SUBMITTER: Poinsignon A 

PROVIDER: S-EPMC2427200 | biostudies-literature | 2008 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites.

Poinsignon Anne A   Cornelie Sylvie S   Mestres-Simon Montserrat M   Lanfrancotti Alessandra A   Rossignol Marie M   Boulanger Denis D   Cisse Badara B   Sokhna Cheikh C   Arcà Bruno B   Simondon François F   Remoue Franck F  

PloS one 20080625 6


<h4>Background</h4>In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal  ...[more]

Similar Datasets

| S-EPMC3631127 | biostudies-literature
| S-EPMC6771112 | biostudies-literature
| S-EPMC3160432 | biostudies-literature
| S-EPMC8550589 | biostudies-literature
| S-EPMC3060095 | biostudies-literature
| S-EPMC3547717 | biostudies-literature
| S-EPMC3740408 | biostudies-literature
| S-EPMC3766161 | biostudies-literature
| S-EPMC8253393 | biostudies-literature
| S-EPMC3237593 | biostudies-literature