Unknown

Dataset Information

0

Roles of p15Ink4b and p16Ink4a in myeloid differentiation and RUNX1-ETO-associated acute myeloid leukemia.


ABSTRACT: Inactivation of p15(Ink4b) expression by promoter hypermethylation occurs in up to 80% of acute myeloid leukemia (AML) cases and is particularly common in the FAB-M2 subtype of AML, which is characterized by the presence of the RUNX1-ETO translocation in 40% of cases. To establish whether the loss of p15(Ink4b) contributes to AML progression in association with RUNX1-ETO, we have expressed the RUNX1-ETO fusion protein from a retroviral vector in hematopoietic progenitor cells isolated from wild-type, p15(Ink4b) or p16(Ink4a) knockout bone marrow. Analysis of lethally irradiated recipient mice reconstituted with RUNX1-ETO-expressing cells showed that neither p15(Ink4b) or p16(Ink4a) loss significantly accelerated disease progression over the time period of one year post-transplantation. Loss of p15(Ink4b) alone resulted in increased myeloid progenitor cell frequencies in bone marrow by 10-month post-transplant and a 19-fold increase in the frequency of Lin(-)c-Kit(+)Sca-1(+) (LKS) cells that was not associated with expansion of long-term reconstituting HSC. These results strongly suggest that p15(Ink4b) loss must be accompanied by additional oncogenic changes for RUNX1-ETO-associated AML to develop.

SUBMITTER: Ko RM 

PROVIDER: S-EPMC2430055 | biostudies-literature | 2008 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Roles of p15Ink4b and p16Ink4a in myeloid differentiation and RUNX1-ETO-associated acute myeloid leukemia.

Ko Rose M RM   Kim Hyung-Gyoon HG   Wolff Linda L   Klug Christopher A CA  

Leukemia research 20071126 7


Inactivation of p15(Ink4b) expression by promoter hypermethylation occurs in up to 80% of acute myeloid leukemia (AML) cases and is particularly common in the FAB-M2 subtype of AML, which is characterized by the presence of the RUNX1-ETO translocation in 40% of cases. To establish whether the loss of p15(Ink4b) contributes to AML progression in association with RUNX1-ETO, we have expressed the RUNX1-ETO fusion protein from a retroviral vector in hematopoietic progenitor cells isolated from wild-  ...[more]

Similar Datasets

| S-EPMC6119136 | biostudies-literature
| S-EPMC10544281 | biostudies-literature
| S-EPMC5928880 | biostudies-literature
| S-EPMC8478654 | biostudies-literature
| S-EPMC3286215 | biostudies-literature
| S-EPMC3412349 | biostudies-literature
| S-EPMC8664044 | biostudies-literature
| S-EPMC10079536 | biostudies-literature
| S-EPMC3754260 | biostudies-literature
2023-10-11 | GSE218829 | GEO