Unknown

Dataset Information

0

Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis.


ABSTRACT: LpxD catalyzes the third step of lipid A biosynthesis, the (R)-3-hydroxymyristoyl-acyl carrier protein ( R-3-OHC14-ACP)-dependent N-acylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-alpha-D-glucosamine [UDP-3-O-(R-3-OHC14)-GlcN]. We have now overexpressed and purified Escherichia coli LpxD to homogeneity. Steady-state kinetics suggest a compulsory ordered mechanism in which R-3-OHC14-ACP binds prior to UDP-3-O-(R-3-OHC14)-GlcN. The product, UDP-2,3-diacylglucosamine, dissociates prior to ACP; the latter is a competitive inhibitor against R-3-OHC14-ACP and a noncompetitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN. UDP-2-N-[(R)-3-Hydroxymyristoyl]-alpha-D-glucosamine, obtained by mild base hydrolysis of UDP-2,3-diacylglucosamine, is a noncompetitive inhibitor against both substrates. Synthetic (R)-3-hydroxylauroyl-methylphosphopantetheine is an uncompetitive inhibitor against R-3-OHC14-ACP and a competitive inhibitor against UDP-3-O-(R-3-OHC14)-GlcN, but (R)-3-hydroxylauroyl-methylphosphopantetheine is also a very poor substrate. A compulsory ordered mechanism is consistent with the fact that R-3-OHC14-ACP has a high binding affinity for free LpxD whereas UDP-3-O-(R-3-OHC14)-GlcN does not. Divalent cations inhibit R-3-OHC14-ACP-dependent acylation but not (R)-3-hydroxylauroyl-methylphosphopantetheine-dependent acylation, indicating that the acidic recognition helix of R-3-OHC14-ACP contributes to binding. The F41A mutation increases the K(M) for UDP-3-O-(R-3-OHC14)-GlcN 30-fold, consistent with aromatic stacking of the corresponding F43 side chain against the uracil moiety of bound UDP-GlcNAc in the X-ray structure of Chlamydia trachomatis LpxD. Mutagenesis implicates E. coli H239 but excludes H276 as the catalytic base, and neither residue is likely to stabilize the oxyanion intermediate.

SUBMITTER: Bartling CM 

PROVIDER: S-EPMC2435086 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis.

Bartling Craig M CM   Raetz Christian R H CR  

Biochemistry 20080419 19


LpxD catalyzes the third step of lipid A biosynthesis, the (R)-3-hydroxymyristoyl-acyl carrier protein ( R-3-OHC14-ACP)-dependent N-acylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-alpha-D-glucosamine [UDP-3-O-(R-3-OHC14)-GlcN]. We have now overexpressed and purified Escherichia coli LpxD to homogeneity. Steady-state kinetics suggest a compulsory ordered mechanism in which R-3-OHC14-ACP binds prior to UDP-3-O-(R-3-OHC14)-GlcN. The product, UDP-2,3-diacylglucosamine, dissociates prior to ACP; the la  ...[more]

Similar Datasets

| S-EPMC1810333 | biostudies-literature
| S-EPMC2748855 | biostudies-literature
| S-EPMC5046821 | biostudies-literature
| S-EPMC10569748 | biostudies-literature
| S-EPMC1135840 | biostudies-other
| S-EPMC10795190 | biostudies-literature
| S-EPMC5524190 | biostudies-literature
| S-EPMC2389879 | biostudies-literature
| S-EPMC1144524 | biostudies-other
| S-EPMC1144282 | biostudies-other