Unknown

Dataset Information

0

Rasch fit statistics and sample size considerations for polytomous data.


ABSTRACT:

Background

Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health research the purpose of this study was therefore to explore the relationship between fit statistics and sample size for polytomous data.

Methods

Data were collated from a heterogeneous sample of cancer patients (n = 4072) who had completed both the Patient Health Questionnaire - 9 and the Hospital Anxiety and Depression Scale. Ten samples were drawn with replacement for each of eight sample sizes (n = 25 to n = 3200). The Rating and Partial Credit Models were applied and the mean square and t-fit statistics (infit/outfit) derived for each model.

Results

The results demonstrated that t-statistics were highly sensitive to sample size, whereas mean square statistics remained relatively stable for polytomous data.

Conclusion

It was concluded that mean square statistics were relatively independent of sample size for polytomous data and that misfit to the model could be identified using published recommended ranges.

SUBMITTER: Smith AB 

PROVIDER: S-EPMC2440760 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rasch fit statistics and sample size considerations for polytomous data.

Smith Adam B AB   Rush Robert R   Fallowfield Lesley J LJ   Fallowfield Lesley J LJ   Velikova Galina G   Sharpe Michael M  

BMC medical research methodology 20080529


<h4>Background</h4>Previous research on educational data has demonstrated that Rasch fit statistics (mean squares and t-statistics) are highly susceptible to sample size variation for dichotomously scored rating data, although little is known about this relationship for polytomous data. These statistics help inform researchers about how well items fit to a unidimensional latent trait, and are an important adjunct to modern psychometrics. Given the increasing use of Rasch models in health researc  ...[more]

Similar Datasets

| S-EPMC2795392 | biostudies-literature
| S-EPMC9054939 | biostudies-literature
| S-EPMC6863808 | biostudies-literature
| S-EPMC5173295 | biostudies-literature
| S-EPMC2942858 | biostudies-literature
| S-EPMC6590172 | biostudies-literature
| S-EPMC9881880 | biostudies-literature
| S-EPMC11251325 | biostudies-literature
| S-EPMC4488363 | biostudies-literature
| S-EPMC3351535 | biostudies-literature