Type II secretory pathway for surface secretion of DraD invasin from the uropathogenic Escherichia coli Dr+ strain.
Ontology highlight
ABSTRACT: The virulence of the uropathogenic Escherichia coli Dr(+) IH11128 strain is associated with the presence of Dr fimbrial structures and a DraD invasin which can act as a fimbrial capping domain at the bacterial cell surface. However, a recent study suggests that the DraD protein is surface exposed in two forms: fimbria associated and fimbria nonassociated (prone to interaction with the N-terminal extension of the DraE protein located on the fimbrial tip). The actual mechanism of DraD surface secretion is presently unknown. We identified a previously unrecognized type II secretory pathway (secreton) in the uropathogenic E. coli Dr(+) strain which is well conserved among gram-negative bacteria and used mainly for secretion of virulence determinants. An active secreton is composed of 12 to 15 different proteins, among which GspD functions as an outer-membrane channel to permit extrusion of proteins in a folded state. Therefore, we inactivated the pathway by inserting the group II intron into a gspD gene of the type II secretion machinery by site-specific recombination. DraD secretion by the E. coli Dr(+) and gspD mutant strains was determined by immunofluorescence microscopy (with antibodies raised against DraD) and an assay of cell binding between bacteria and HeLa cells. The specificity of DraD-mediated bacterial binding for the integrin receptor was confirmed by examination of the adhesion of DraD-coated beads to HeLa cells in the presence and absence of alpha(5)beta(1) monoclonal antibodies. The investigations that we performed showed that type II secretion in E. coli Dr(+) strains leads to DraD translocation at the bacterial cell surfaces.
SUBMITTER: Zalewska-Piatek B
PROVIDER: S-EPMC2447028 | biostudies-literature | 2008 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA