Unknown

Dataset Information

0

Sirt1 protects against high-fat diet-induced metabolic damage.


ABSTRACT: The identification of new pharmacological approaches to effectively prevent, treat, and cure the metabolic syndrome is of crucial importance. Excessive exposure to dietary lipids causes inflammatory responses, deranges the homeostasis of cellular metabolism, and is believed to constitute a key initiator of the metabolic syndrome. Mammalian Sirt1 is a protein deacetylase that has been involved in resveratrol-mediated protection from high-fat diet-induced metabolic damage, but direct proof for the implication of Sirt1 has remained elusive. Here, we report that mice with moderate overexpression of Sirt1 under the control of its natural promoter exhibit fat mass gain similar to wild-type controls when exposed to a high-fat diet. Higher energy expenditure appears to be compensated by a parallel increase in food intake. Interestingly, transgenic Sirt1 mice under a high-fat diet show lower lipid-induced inflammation along with better glucose tolerance, and are almost entirely protected from hepatic steatosis. We present data indicating that such beneficial effects of Sirt1 are due to at least two mechanisms: induction of antioxidant proteins MnSOD and Nrf1, possibly via stimulation of PGC1alpha, and lower activation of proinflammatory cytokines, such as TNFalpha and IL-6, via down-modulation of NFkappaB activity. Together, these results provide direct proof of the protective potential of Sirt1 against the metabolic consequences of chronic exposure to a high-fat diet.

SUBMITTER: Pfluger PT 

PROVIDER: S-EPMC2474520 | biostudies-literature | 2008 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sirt1 protects against high-fat diet-induced metabolic damage.

Pfluger Paul T PT   Herranz Daniel D   Velasco-Miguel Susana S   Serrano Manuel M   Tschöp Matthias H MH  

Proceedings of the National Academy of Sciences of the United States of America 20080703 28


The identification of new pharmacological approaches to effectively prevent, treat, and cure the metabolic syndrome is of crucial importance. Excessive exposure to dietary lipids causes inflammatory responses, deranges the homeostasis of cellular metabolism, and is believed to constitute a key initiator of the metabolic syndrome. Mammalian Sirt1 is a protein deacetylase that has been involved in resveratrol-mediated protection from high-fat diet-induced metabolic damage, but direct proof for the  ...[more]

Similar Datasets

| S-EPMC6689278 | biostudies-literature
| S-EPMC5220393 | biostudies-literature
| S-EPMC3366688 | biostudies-literature
| S-EPMC5550513 | biostudies-literature
| S-EPMC5124332 | biostudies-literature
| S-EPMC8873487 | biostudies-literature
| S-EPMC3949027 | biostudies-literature
| S-EPMC7785956 | biostudies-literature
| S-EPMC8449133 | biostudies-literature
| S-EPMC5086849 | biostudies-other