Calculation of site-specific carbon-isotope fractionation in pedogenic oxide minerals.
Ontology highlight
ABSTRACT: Ab initio molecular dynamics and quantum chemistry techniques are used to calculate the structure, vibrational frequencies, and carbon-isotope fractionation factors of the carbon dioxide component [CO(2)(m)] of soil (oxy)hydroxide minerals goethite, diaspore, and gibbsite. We have identified two possible pathways of incorporation of CO(2)(m) into (oxy)hydroxide crystal structures: one in which the C(4+) substitutes for four H(+) [CO(2)(m)(A)] and another in which C(4+) substitutes for (Al(3+),Fe(3+)) + H(+) [CO(2)(m)(B)]. Calculations of isotope fractionation factors give large differences between the two structures, with the CO(2)(m)(A) being isotopically lighter than CO(2)(m)(B) by approximately 10 per mil in the case of gibbsite and nearly 20 per mil in the case of goethite. The reduced partition function ratio of CO(2)(m)(B) structure in goethite differs from CO(2)(g) by <1 per mil. The predicted fractionation for gibbsite is >10 per mil higher, close to those measured for calcite and aragonite. The surprisingly large difference in the carbon-isotope fractionation factor between the CO(2)(m)(A) and CO(2)(m)(B) structures within a given mineral suggests that the isotopic signatures of soil (oxy)hydroxide could be heterogeneous.
SUBMITTER: Rustad JR
PROVIDER: S-EPMC2475500 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA