Unknown

Dataset Information

0

The discovery of structural form.


ABSTRACT: Algorithms for finding structure in data have become increasingly important both as tools for scientific data analysis and as models of human learning, yet they suffer from a critical limitation. Scientists discover qualitatively new forms of structure in observed data: For instance, Linnaeus recognized the hierarchical organization of biological species, and Mendeleev recognized the periodic structure of the chemical elements. Analogous insights play a pivotal role in cognitive development: Children discover that object category labels can be organized into hierarchies, friendship networks are organized into cliques, and comparative relations (e.g., "bigger than" or "better than") respect a transitive order. Standard algorithms, however, can only learn structures of a single form that must be specified in advance: For instance, algorithms for hierarchical clustering create tree structures, whereas algorithms for dimensionality-reduction create low-dimensional spaces. Here, we present a computational model that learns structures of many different forms and that discovers which form is best for a given dataset. The model makes probabilistic inferences over a space of graph grammars representing trees, linear orders, multidimensional spaces, rings, dominance hierarchies, cliques, and other forms and successfully discovers the underlying structure of a variety of physical, biological, and social domains. Our approach brings structure learning methods closer to human abilities and may lead to a deeper computational understanding of cognitive development.

SUBMITTER: Kemp C 

PROVIDER: S-EPMC2492756 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2010-10-08 | E-GEOD-18495 | biostudies-arrayexpress
2010-10-08 | GSE18495 | GEO
2012-02-28 | E-GEOD-35800 | biostudies-arrayexpress
2012-02-28 | GSE35800 | GEO
2015-11-23 | E-GEOD-60579 | biostudies-arrayexpress
2015-11-23 | GSE60579 | GEO
| S-EPMC3012483 | biostudies-literature
| S-EPMC7185576 | biostudies-literature
| S-EPMC310695 | biostudies-literature
| S-EPMC3427657 | biostudies-literature