Glypican-3-mediated oncogenesis involves the Insulin-like growth factor-signaling pathway.
Ontology highlight
ABSTRACT: Glypican-3 (gpc3) is the gene responsible for Simpson-Golabi-Behmel overgrowth syndrome. Previously, we have shown that GPC3 is overexpressed in hepatocellular carcinoma (HCC). In this study, we demonstrated the mechanisms for GPC3-mediated oncogenesis. Firstly, GPC3 overexpression in NIH3T3 cells gave to cancer cell phenotypes including growing in serum-free medium and forming colonies in soft agar, or on the other way, GPC3 knockdown in HuH-7 cells decreased oncogenecity. We further demonstrated that GPC3 bound specifically through its N-terminal proline-rich region to both Insulin-like growth factor (IGF)-II and IGF-1R. GPC3 stimulated the phosphorylation of IGF-1R and the downstream signaling molecule extracellular signal-regulated kinase (ERK) in an IGF-II-dependent way. Also, GPC3 knockdown in HCC cells decreased the phosphorylation of both IGF-1R and ERK. Therefore, GPC3 confers oncogenecity through the interaction between IGF-II and its receptor, and the subsequent activation of the IGF-signaling pathway. This data are novel to the current understanding of the role of GPC3 in HCC and will be important in future developments of cancer therapy.
SUBMITTER: Cheng W
PROVIDER: S-EPMC2500215 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA