The proton donor for O-O bond scission by cytochrome c oxidase.
Ontology highlight
ABSTRACT: Cytochrome c oxidase is the main catalyst of oxygen consumption in mitochondria and many aerobic bacteria. The key step in oxygen reduction is scission of the O-O bond and formation of an intermediate P(R) of the binuclear active site composed of heme a(3) and Cu(B). The donor of the proton required for this reaction has been suggested to be a unique tyrosine residue (Tyr-280) covalently cross-linked to one of the histidine ligands of Cu(B). To test this idea we used the Glu-278-Gln mutant enzyme from Paracoccus denitrificans, in which the reaction with oxygen stops at the P(R) intermediate. Three different time-resolved techniques were used. Optical spectroscopy showed fast (approximately 60 micros) appearance of the P(R) species along with full oxidation of heme a, and FTIR spectroscopy revealed a band at 1,308 cm(-1), which is characteristic for the deprotonated form of the cross-linked Tyr-280. The development of electric potential during formation of the P(R) species suggests transfer of a proton over a distance of approximately 4 A perpendicular to the membrane plane, which is close to the distance between the oxygen atom of the hydroxyl group of Tyr-280 and the bound oxygen. These results strongly support the hypothesis that the cross-linked tyrosine is the proton donor for O-O bond cleavage by cytochrome c oxidase and strengthens the view that this tyrosine also provides the fourth electron in O(2) reduction in conditions where heme a is oxidized.
SUBMITTER: Gorbikova EA
PROVIDER: S-EPMC2504829 | biostudies-literature | 2008 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA