Unknown

Dataset Information

0

A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives.


ABSTRACT: The crystallographic phase problem [Muirhead & Perutz (1963), Nature (London), 199, 633-638] remains the single major impediment to obtaining a three-dimensional structure of a macromolecule once suitable crystals have been obtained. Recently, it was found that it was possible to solve the structure of a 142-nucleotide L1 ligase ribozyme heterodimer that possesses no noncrystallographic symmetry without heavy-atom derivatives, anomalous scattering atoms or other modifications and without a model of the tertiary structure of the ribozyme [Robertson & Scott (2007), Science, 315, 1549-1553]. Using idealized known RNA secondary-structural fragments such as A-form helices and GNRA tetraloops in an iterative molecular-replacement procedure, it was possible to obtain an estimated phase set that, when subjected to solvent flattening, yielded an interpretable electron-density map with minimized model bias, allowing the tertiary structure of the ribozyme to be solved. This approach has also proven successful with other ribozymes, structured RNAs and RNA-protein complexes.

SUBMITTER: Robertson MP 

PROVIDER: S-EPMC2507861 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4089484 | biostudies-literature
| S-EPMC4784675 | biostudies-literature
| S-EPMC6464214 | biostudies-literature
| S-EPMC1177523 | biostudies-other
| S-EPMC4392414 | biostudies-literature
| S-EPMC4420543 | biostudies-literature
| S-EPMC5107899 | biostudies-literature
| S-EPMC5137623 | biostudies-literature
| S-EPMC4778836 | biostudies-other
| S-EPMC7473402 | biostudies-literature