Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1.
Ontology highlight
ABSTRACT: Pseudomonas aeruginosa uses quorum sensing, an interbacterial communication system, to regulate gene expression. The signaling molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is thought to play a central role in quorum sensing. Since 3OC12-HSL can be degraded by paraoxonase (PON) family members, we hypothesized that PONs regulate P. aeruginosa virulence in vivo. We chose Drosophila melanogaster as our model organism because it has been shown to be a tractable model for investigating host-pathogen interactions and lacks PONs. By using quorum-sensing-deficient P. aeruginosa, synthetic acyl-HSLs, and transgenic expression of human PON1, we investigated the role of 3OC12-HSL and PON1 on P. aeruginosa virulence. We found that P. aeruginosa virulence in flies was dependent upon 3OC12-HSL. PON1 transgenic flies expressed enzymatically active PON1 and thereby exhibited arylesterase activity and resistance to organophosphate toxicity. Moreover, PON1 flies were protected from P. aeruginosa lethality, and protection was dependent on the lactonase activity of PON1. Our findings show that PON1 can interfere with quorum sensing in vivo and provide insight into what we believe is a novel role for PON1 in the innate immune response to quorum-sensing-dependent pathogens. These results raise intriguing possibilities about human-pathogen interactions, including potential roles for PON1 as a modifier gene and for PON1 protein as a regulator of normal bacterial florae, a link between infection/inflammation and cardiovascular disease, and a potential therapeutic modality.
Project description:Using the fruit fly Drosophila melanogaster as model host, we have identified mutants of the bacterium Pseudomonas aeruginosa with reduced virulence. Strikingly, all strains strongly impaired in fly killing also lacked twitching motility; most such strains had a mutation in pilGHIJKL chpABCDE, a gene cluster known to be required for twitching motility and potentially encoding a signal transduction system. The pil chp genes appear to control the expression of additional virulence factors, however, since the wild-type fly-killing phenotype of a subset of mutants isolated on the basis of their compact colony morphology indicated that twitching motility itself was not required for full virulence in the fly.
Project description:Antibiotic tolerance contributes to the inability of standard antimicrobial therapies to clear the chronic Pseudomonas aeruginosa lung infections that often afflict patients with cystic fibrosis (CF). Metabolic potentiation of bactericidal antibiotics with carbon sources has emerged as a promising strategy to resensitize tolerant bacteria to antibiotic killing. Fumarate (FUM), a C4-dicarboxylate, has been recently shown to resensitize tolerant P. aeruginosa to killing by tobramycin (TOB), an aminoglycoside antibiotic, when used in combination (TOB+FUM). Fumarate and other C4-dicarboxylates are taken up intracellularly by transporters regulated by the alternative sigma factor RpoN. Once in the cell, FUM is metabolized, leading to enhanced electron transport chain activity, regeneration of the proton motive force, and increased TOB uptake. In this work, we demonstrate that a ΔrpoN mutant displays impaired FUM uptake and, consequently, nonsusceptibility to TOB+FUM treatment. RpoN was also found to be essential for susceptibility to other aminoglycoside and C4-dicarboxylate combinations. Importantly, RpoN loss-of-function mutations have been documented to evolve in the CF lung, and these loss-of-function alleles can also result in TOB+FUM nonsusceptibility. In a mixed-genotype population of wild-type and ΔrpoN cells, TOB+FUM specifically killed cells with RpoN function and spared the cells that lacked RpoN function. Unlike C4-dicarboylates, both d-glucose and l-arginine were able to potentiate TOB killing of ΔrpoN stationary-phase cells. Our findings raise the question of whether TOB+FUM will be a suitable treatment option in the future for CF patients infected with P. aeruginosa isolates that lack RpoN function.
Project description:BackgroundThe bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility.ResultsMicroarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses.ConclusionsResults reported in this study show that, as opposed to swarm center cells, tendril tip populations of a swarming colony displays general down-regulation of genes associated with virulence and up-regulation of genes involved in energy metabolism. These results allow us to propose a model where tendril tip cells function as «scouts» whose main purpose is to rapidly spread on uncolonized surfaces while swarm center population are in a state allowing a permanent settlement of the colonized area (biofilm-like).
Project description:BackgroundThe fruit fly, Drosophila melanogaster, is a well-established model organism for probing the molecular and cellular basis of physiological and immune system responses of adults or late stage larvae to bacterial challenge. However, very little is known about the consequences of bacterial infections that occur in earlier stages of development. We have infected mid-second instar larvae with strains of Pseudomonas fluorescens to determine how infection alters the ability of larvae to survive and complete development.Methodology/principal findingsWe mimicked natural routes of infection using a non-invasive feeding procedure to study the toxicity of the three sequenced P. fluorescens strains (Pf0-1, SBW25, and Pf-5) to Drosophila melanogaster. Larvae fed with the three strains of P. fluorescens showed distinct differences in developmental trajectory and survival. Treatment with SBW25 caused a subset of insects to die concomitant with a systemic melanization reaction at larval, pupal or adult stages. Larvae fed with Pf-5 died in a dose-dependent manner with adult survivors showing eye and wing morphological defects. In addition, larvae in the Pf-5 treatment groups showed a dose-dependent delay in the onset of metamorphosis relative to control-, Pf0-1-, and SBW25-treated larvae. A functional gacA gene is required for the toxic properties of wild-type Pf-5 bacteria.Conclusions/significanceThese experiments are the first to demonstrate that ingestion of P. fluorescens bacteria by D. melanogaster larvae causes both lethal and non-lethal phenotypes, including delay in the onset of metamorphosis and morphological defects in surviving adult flies, which can be decoupled.
Project description:Drosophila melanogaster is a validated eukaryotic model for immunity-concerned studies in the post-genomic era. In the present study we performed oral experimental infection of D. melanogaster with Pseudomonas aeruginosa (strain ATCC27853). By using a whole genome microarray approach, we intended to identify significant alterations in the expression profile of relevant genes amenable to qualify as new models for the investigation of specific host-parasite interactions.
Project description:Thousands of Pseudomonas aeruginosa RNA sequencing (RNA-seq) gene expression profiles are publicly available via the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). In this work, the transcriptional profiles from hundreds of studies performed by over 75 research groups were reanalyzed in aggregate to create a powerful tool for hypothesis generation and testing. Raw sequence data were uniformly processed using the Salmon pseudoaligner, and this read mapping method was validated by comparison to a direct alignment method. We developed filtering criteria to exclude samples with aberrant levels of housekeeping gene expression or an unexpected number of genes with no reported values and normalized the filtered compendia using the ratio-of-medians method. The filtering and normalization steps greatly improved gene expression correlations for genes within the same operon or regulon across the 2,333 samples. Since the RNA-seq data were generated using diverse strains, we report the effects of mapping samples to noncognate reference genomes by separately analyzing all samples mapped to cDNA reference genomes for strains PAO1 and PA14, two divergent strains that were used to generate most of the samples. Finally, we developed an algorithm to incorporate new data as they are deposited into the SRA. Our processing and quality control methods provide a scalable framework for taking advantage of the troves of biological information hibernating in the depths of microbial gene expression data and yield useful tools for P. aeruginosa RNA-seq data to be leveraged for diverse research goals. IMPORTANCE Pseudomonas aeruginosa is a causative agent of a wide range of infections, including chronic infections associated with cystic fibrosis. These P. aeruginosa infections are difficult to treat and often have negative outcomes. To aid in the study of this problematic pathogen, we mapped, filtered for quality, and normalized thousands of P. aeruginosa RNA-seq gene expression profiles that were publicly available via the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). The resulting compendia facilitate analyses across experiments, strains, and conditions. Ultimately, the workflow that we present could be applied to analyses of other microbial species.
Project description:Backgrounds and purposeThe theory of "entero-pulmonary axis" proves that pneumonia leads to gut microbiota disturbance and Treg/Th17 immune imbalance. This study is aimed to explore the potential mechanism of fecal microbiota transplantation (FMT) in the treatment of Pseudomonas aeruginosa pneumonia, in order to provide new insights into the treatment of pneumonia.MethodsPseudomonas aeruginosa and C57/BL6 mice were used to construct the acute pneumonia mouse model, and FMT was treated. Histopathological changes in lung and spleen were observed by HE staining. The expression of CD25, Foxp3 and IL-17 was observed by immunofluorescence. The proportion of Treg and Th17 cells was analyzed by flow cytometry. Serum IL-6, LPS, and IFN-γ levels were detected by ELISA. The expression of TNF-α, IFN-γ, IL-6, IL-2, Foxp3, IL-17, IL-10, and TGFβ1 in lung tissue homogenate was detected by qRT-PCR. 16S rRNA sequencing and non-targeted metabolomics were used to analyze gut microbiota and metabolism.ResultsPseudomonas aeruginosa caused the decrease of body weight, food and water intake, lung tissue, and spleen injury in mice with pneumonia. Meanwhile, it caused lung tissue and serum inflammation, and Treg/Th17 cell imbalance in mice with pneumonia. Pseudomonas aeruginosa reduced the diversity and number of gut microbiota in pneumonia mice, resulting in metabolic disorders, superpathway of quinolone and alkylquinolone biosynthesis. It also led to the decrease of 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis, and the enrichment of Amino sugar and nucleotide sugar metabolism. FMT with or without antibiotic intervention restored gut microbiota abundance and diversity, suppressed inflammation and tissue damage, and promoted an immunological balance of Treg/Th17 cells in mice with pneumonia. In addition, FMT inhibited the aerobactin biosynthesis, 4-hydroxyphenylacetate degradation, superpathway of lipopolysaccharide biosynthesis and L-arabinose degradation IV function of microbiota, and improved amino sugar and nucleotide sugar metabolism.ConclusionsFMT restored the Treg/Th17 cells' balance and improved inflammation and lung injury in mice with Pseudomonas aeruginosa pneumonia by regulating gut microbiota disturbance and metabolic disorder.
Project description:Paraoxonase 3 (PON3) is a member of the PON family, which includes PON1, PON2, and PON3. Recently, PON3 was shown to prevent the oxidation of low-density lipoprotein in vitro. To test the role of PON3 in atherosclerosis and related traits, 2 independent lines of human PON3 transgenic (Tg) mice on the C57BL/6J (B6) background were constructed. Human PON3 mRNA was detected in various tissues, including liver, lung, kidney, brain, adipose, and aorta, of both lines of Tg mice. The human PON3 mRNA levels in the livers of PON3 Tg mice were 4- to 7-fold higher as compared with the endogenous mouse Pon3 mRNA levels. Human PON3 protein and activity were detected in the livers of Tg mice as well. No significant differences in plasma total, high-density lipoprotein, and very-low-density lipoprotein/low-density lipoprotein cholesterol and triglyceride and glucose levels were observed between the PON3 Tg and non-Tg mice. Interestingly, atherosclerotic lesion areas were significantly smaller in both lines of male PON3 Tg mice as compared with the male non-Tg littermates on B6 background fed an atherogenic diet. When bred onto the low-density lipoprotein receptor knockout mouse background, the male PON3 Tg mice also exhibited decreased atherosclerotic lesion areas and decreased expression of monocyte chemoattractant protein-1 in the aorta as compared with the male non-Tg littermates. In addition, decreased adiposity and lower circulating leptin levels were observed in both lines of male PON3 Tg mice as compared with the male non-Tg mice. In an F2 cross, adipose Pon3 mRNA levels inversely correlated with adiposity and related traits. Our study demonstrates that elevated PON3 expression significantly decreases atherosclerotic lesion formation and adiposity in male mice. PON3 may play an important role in protection against obesity and atherosclerosis.
Project description:Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5'-RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf ) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5' end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post-transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.
Project description:Acyl-homoserine lactone (acyl-HSL) signaling is thought to mediate quorum sensing in many species of Proteobacteria. The opportunistic human pathogen Pseudomonas aeruginosa uses acyl-HSLs to regulate hundreds of genes, including many that code for extracellular virulence factors. The idea that the P. aeruginosa acyl-HSLs serve as quorum-sensing signals has been questioned recently because microarray experiments show that the addition of signals to cultures of P. aeruginosa does not advance the onset of transcription for most acyl-HSL-dependent genes. We show that, under specific conditions, the expression of many acyl-HSL-dependent genes can be triggered at low culture density by signal addition. If complex medium is conditioned by growth of a non-acyl-HSL-producing P. aeruginosa, signals can eliminate the delay in expression of a battery of acyl-HSL-dependent genes. Furthermore, for one representative gene, lasB, there is no delay when signals are added to P. aeruginosa growing in conditioned complex medium or in minimal medium. We conclude that complex medium contains an inhibitor or inhibitors that can prevent induction of many, but not all, acyl-HSL-regulated genes and that the inhibitor is consumed by P. aeruginosa. Our results show that acyl-HSL signals can trigger expression of a large number of acyl-HSL-dependent genes regardless of growth phase. In this way, signaling in P. aeruginosa appears similar to quorum signaling in other Proteobacteria.