ABSTRACT: The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3' end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4a, H4b, and previously identified hairpins H4, H5, and Pr) and one H-type pseudoknot (Psi(3)) within the 3'-terminal 194 nucleotides (nt). In vivo compensatory mutagenesis analyses confirmed the existence of H4a, H4b, Psi(3) and a second pseudoknot (Psi(2)) previously identified in a TCV satellite RNA. In-line structure probing of the 194-nt fragment supported the coexistence of H4, H4a, H4b, Psi(3) and a pseudoknot that connects H5 and the 3' end (Psi(1)). Stepwise replacements of TCV elements with the comparable elements from Cardamine chlorotic fleck virus indicated that the complete 142-nt 3' end, and subsets containing Psi(3), H4a, and H4b or Psi(3), H4a, H4b, H5, and Psi(2), form functional domains for virus accumulation in vivo. A new 3-D molecular modeling protocol (RNA2D3D) predicted that H4a, H4b, H5, Psi(3), and Psi(2) are capable of simultaneous existence and bears some resemblance to a tRNA. The related Japanese iris necrotic ring virus does not have comparable domains. These results provide a framework for determining how interconnected elements participate in processes that require 3' untranslated region sequences such as translation and replication.