Project description:MethodThe main variables assessed were: answer to complete a target task (wrong or correctly), and percentage gain in the reaction time (RT) to complete a target task correctly depending on whether the prime was a counterfactual or a neutral-control cue. These variables were assessed in 37 patients with schizophrenia and 37 healthy controls. Potential associations with clinical status and socio-demographic characteristics were also explored.ResultsWhen a counterfactual prime was presented, the probability of giving an incorrect answer was lower for the entire sample than when a neutral prime was presented (OR 0.58; CI 95% 0.42 to 0.79), but the schizophrenia patients showed a higher probability than the controls of giving an incorrect answer (OR 3.89; CI 95% 2.0 to 7.6). Both the schizophrenia patients and the controls showed a similar percentage gain in RT to a correct answer of 8%.ConclusionsChallenging the results of previous research, our findings suggest a normal activation of behavioural intentions facilitated by CFT in schizophrenia. Nevertheless, the patients showed more difficulty than the controls with the task, adding support to the concept of CFT as a potential new target for consideration in future therapeutic approaches for this illness.
Project description:Background and objectiveCounterfactual thinking (CFT) refers to the generation of mental simulations of alternatives to past events, actions and outcomes. CFT is a pervasive cognitive feature in every-day life and is closely related to decision-making, planning and problem-solving - all of which are cognitive processes linked to unimpaired frontal lobe functioning. Huntington's Disease (HD) is a neurodegenerative disorder characterised by motor, behavioral and cognitive dysfunctions. Because an impairment in frontal and executive functions has been described in HD, we hypothesised that HD patients may have a CFT impairment.MethodsTests of spontaneous counterfactual thoughts and counterfactual-derived inferences were administered to 24 symptomatic HD patients and 24 age- and sex-matched healthy subjects.ResultsOur results show a significant impairment in the spontaneous generation of CFT and low performance on the Counterfactual Inference Test (CIT) in HD patients. Low performance on the spontaneous CFT test significantly correlates with impaired attention abilities, verbal fluency and frontal lobe efficiency, as measured by Trail Making Test - Part A, Phonemic Verbal Fluency Test and FAB.ConclusionsSpontaneous CFT and the use of this type of reasoning are impaired in HD patients. This deficit may be related to frontal lobe dysfunction, which is a hallmark of HD. Because CFT has a pervasive role in patients' daily lives regarding their planning, decision making and problem solving skills, cognitive rehabilitation may improve HD patients' ability to analyse current behaviors and future actions.
Project description:Counterfactual thinking is thinking about a past that did not happen. This is often the case in "if only…" situations, where we wish something had or had not happened. To make a choice in a moral decision-making situation is particularly hard and, therefore, may be often associated with the imagination of a different outcome. The main aim of the present study is to investigate counterfactual thinking in the context of moral reasoning. We used a modified version of Greene's moral dilemmas test, studying both the time needed to provide a counterfactual in the first and third person and the type of given response (in context-out of context) in a sample of 90 healthy subjects. We found a longer response time for personal vs. impersonal moral dilemmas. This effect was enhanced in the first person perspective, while in the elderly there was an overall slowing of response time. Out of context/omissive responses were more frequent in the case of personal moral dilemmas presented in the first person version, with females showing a marked increase in this kind of response. These findings suggest that gender and perspective have a critical role in counterfactual thinking in the context of moral reasoning, and may have implications for the understanding of gender-related inclinations as well as differences in moral judgment.
Project description:Counterfactual thinking (reflecting on "what might have been") has been shown to enhance future performance by translating information about past mistakes into plans for future action. Prefactual thinking (imagining "what might be if…") may serve a greater preparative function than counterfactual thinking as it is future-orientated and focuses on more controllable features, thus providing a practical script to prime future behaviour. However, whether or not this difference in hypothetical thought content may translate into a difference in actual task performance has been largely unexamined. In Experiment 1 (n = 42), participants performed trials of a computer-simulated physical task, in between which they engaged in either task-related hypothetical thinking (counterfactual or prefactual) or an unrelated filler task (control). As hypothesised, prefactuals contained more controllable features than counterfactuals. Moreover, participants who engaged in either form of hypothetical thinking improved significantly in task performance over trials compared to participants in the control group. The difference in thought content between counterfactuals and prefactuals, however, did not yield a significant difference in performance improvement. Experiment 2 (n = 42) replicated these findings in a dynamic balance task environment. Together, these findings provide further evidence for the preparatory function of counterfactuals, and demonstrate that prefactuals share this same functional characteristic.
Project description:BackgroundThe ability to simulate alternatives to factual events is called counterfactual thinking (CFT) and it is involved both in emotional and behavioral regulation. CFT deficits have been reported in psychiatric and neurological conditions, possibly contributing to patients' difficulties in modulating behaviors and affections. Thus, acknowledging the presence and possible consequences of CFT impairments might be essential for optimal clinical management.ObjectivesThis scoping review aims to summarize the previous evidence about CFT in psychiatric and neurological diseases to determine the extent of the previous research and what has been discovered so far, the variety of clinical conditions considered, the methodologies adopted, and the relevant issues to be addressed by future investigations.MethodsPsycInfo, PubMed, Scopus, and Web of Science were searched to identify articles published up to January 2020, written in English and focused on CFT in adults affected by psychiatric or neurological conditions.ResultsTwenty-nine studies have been included; most of them focused on psychiatric conditions, a minority considered neurological diseases. The generation of counterfactual thoughts related to a negative real-life or a fictional event and the counterfactual inference test were the most popular tasks adopted. CFT impairments were reported in both psychiatric and neurological conditions, likely associated with a fronto-executive dysfunction.ConclusionsFuture research might further explore CFT in those psychiatric and neurological conditions in which CFT difficulties have been preliminary reported. Furthermore, it would be recommendable to extend this investigation to all the clinical conditions possibly at risk of fronto-executive dysfunction. In the end, we speculate that since CFT plays a role in driving everyday behaviors, it might be crucial also when medical decisions are involved; thus, future research might extend the investigation of CFT especially to those populations that implicate complex clinical management.
Project description:BackgroundCounterfactual thinking is a specific type of conditional reasoning that enables the generation of mental simulations of alternatives to past factual events. Although it has been broadly studied in the general population, research on schizophrenia is still scarce. The aim of the current study was to further examine counterfactual reasoning in this illness.MethodsForty schizophrenia patients and 40 controls completed a series of tests that assessed the influence of the "causal order effect" on counterfactual thinking, and the ability to generate counterfactual thoughts and counterfactually derive inferences from a hypothetical situation. Socio-demographic and clinical characteristics, as well as neurocognitive variables, were also examined.ResultsCompared to controls, the schizophrenia patients generated fewer counterfactual thoughts when faced with a simulated scenario. The pattern of response when assessing the causality effect of the order was also different between the groups, with the patients being more frequently unable to attribute any ordering of events than the control subjects. Additionally, the schizophrenia patients showed more difficulties when deriving normative counterfactual inferences from hypothetical social situations. None of the counterfactual reasoning measures was associated to any of the cognitive functions or clinical and socio-demographic variables assessed.ConclusionsA global impairment in counterfactual thinking characterizes schizophrenia patients. Because of the potential impact of such deficits on psychosocial functioning, targeting counterfactual reasoning for improvement might be considered in future treatment approaches.
Project description:Multiple sclerosis (MS) is a progressive disease characterized by widespread white matter lesions in the brain and spinal cord. In addition to well-characterized motor deficits, MS results in cognitive impairments in several domains, notably in episodic autobiographical memory. Recent studies have also revealed that patients with MS exhibit deficits in episodic future thinking, i.e., our capacity to imagine possible events that may occur in our personal future. Both episodic memory and episodic future thinking have been shown to share cognitive and neural mechanisms with a related kind of hypothetical simulation known as episodic counterfactual thinking: our capacity to imagine alternative ways in which past personal events could have occurred but did not. However, the extent to which episodic counterfactual thinking is affected in MS is still unknown. The current study sought to explore this issue by comparing performance in mental simulation tasks involving either past, future or counterfactual thoughts in relapsing-remitting MS. Diffusion weighted imaging (DWI) measures were also extracted to determine whether changes in structural pathways connecting the brain's default mode network (DMN) would be associated with group differences in task performance. Relative to controls, patients showed marked reductions in the number of internal details across all mental simulations, but no differences in the number of external and semantic-based details. It was also found that, relative to controls, patients with relapsing-remitting MS reported reduced composition ratings for episodic simulations depicting counterfactual events, but not so for actual past or possible future episodes. Additionally, three DWI measures of white matter integrity-fractional anisotropy, radial diffusivity and streamline counts-showed reliable differences between patients with relapsing-remitting MS and matched healthy controls. Importantly, DWI measures associated with reduced white matter integrity in three association tracts on the DMN-the right superior longitudinal fasciculus, the left hippocampal portion of the cingulum and the left inferior longitudinal fasciculus-predicted reductions in the number of internal details during episodic counterfactual simulations. Taken together, these results help to illuminate impairments in episodic simulation in relapsing-remitting MS and show, for the first time, a differential association between white matter integrity and deficits in episodic counterfactual thinking in individuals with relapsing-remitting MS.
Project description:Recent evidence suggests that our capacities to remember the past and to imagine what might happen in the future largely depend on the same core brain network that includes the middle temporal lobe, the posterior cingulate/retrosplenial cortex, the inferior parietal lobe, the medial prefrontal cortex, and the lateral temporal cortex. However, the extent to which regions of this core brain network are also responsible for our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), is still unknown. The present study examined this issue. Using a variation of the experimental recombination paradigm (Addis, Pan, Vu, Laiser, & Schacter, 2009. Neuropsychologia. 47: 2222-2238), participants were asked both to remember personal past events and to envision alternative outcomes to such events while undergoing functional magnetic resonance imaging. Three sets of analyses were performed on the imaging data in order to investigate two related issues. First, a mean-centered spatiotemporal partial least square (PLS) analysis identified a pattern of brain activity across regions of the core network that was common to episodic memory and episodic counterfactual thinking. Second, a non-rotated PLS analysis identified two different patterns of brain activity for likely and unlikely episodic counterfactual thoughts, with the former showing significant overlap with the set of regions engaged during episodic recollection. Finally, a parametric modulation was conducted to explore the differential engagement of brain regions during counterfactual thinking, revealing that areas such as the parahippocampal gyrus and the right hippocampus were modulated by the subjective likelihood of counterfactual simulations. These results suggest that episodic counterfactual thinking engages regions that form the core brain network, and also that the subjective likelihood of our counterfactual thoughts modulates the engagement of different areas within this set of regions.
Project description:In four experiments, we explored the inferences people make when they learn that counterfactual thinking has occurred. Experiment 1 (N = 40) showed that knowing that a protagonist had engaged in counterfactual thinking (compared to no counterfactual thinking) resulted in participants inferring that the past event was closer in time to the protagonist, but there was no difference in inferring how close the past event was between knowing that a protagonist made many or a single counterfactual statement(s). Experiment 2 (N = 80) confirmed that participants were not affected by the number of counterfactual statements they read when inferring temporal closeness. Experiment 3 (N = 49) demonstrated that participants who learned that a protagonist had engaged in counterfactual thinking were more likely to infer that the protagonist experienced the controllable event. Experiment 4 (N = 120) indicated that participants who learned that a protagonist had engaged in counterfactual thinking were more likely to infer that the protagonist experienced the exceptional event. We concluded that the existence (but not the number) of counterfactual thoughts can lead people to infer that events were close, exceptional, and controllable, which suggests that the relations between closeness/controllability/exceptionality and counterfactual thinking are bidirectional. These results showed that as well as making inferences based on facts about the real world, people also make inferences about the real world based on hypothetical worlds.
Project description:Previous research has shown that autobiographical episodic counterfactual thinking-i.e., mental simulations about alternative ways in which one's life experiences could have occurred-engages the brain's default network (DN). However, it remains unknown whether or not the DN is also engaged during impersonal counterfactual thoughts, specifically those involving other people or objects. The current study compares brain activity during counterfactual simulations involving the self, others and objects. In addition, counterfactual thoughts involving others were manipulated in terms of similarity and familiarity with the simulated characters. The results indicate greater involvement of DN during person-based (i.e., self and other) as opposed to object-based counterfactual simulations. However, the involvement of different regions of the DN during other-based counterfactual simulations was modulated by how close and/or similar the simulated character was perceived to be by the participant. Simulations involving unfamiliar characters preferentially recruited dorsomedial prefrontal cortex. Simulations involving unfamiliar similar characters, characters with whom participants identified personality traits, recruited lateral temporal gyrus. Finally, our results also revealed differential coupling of right hippocampus with lateral prefrontal and temporal cortex during counterfactual simulations involving familiar similar others, but with left transverse temporal gyrus and medial frontal and inferior temporal gyri during counterfactual simulations involving either oneself or unfamiliar dissimilar others. These results suggest that different brain mechanisms are involved in the simulation of personal and impersonal counterfactual thoughts, and that the extent to which regions associated with autobiographical memory are recruited during the simulation of counterfactuals involving others depends on the perceived similarity and familiarity with the simulated individuals.