Unknown

Dataset Information

0

Transcriptional responses of Arabidopsis thaliana plants to As (V) stress.


ABSTRACT: BACKGROUND: Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress. RESULTS: Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. CONCLUSION: Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research.

SUBMITTER: Abercrombie JM 

PROVIDER: S-EPMC2547109 | biostudies-literature | 2008

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptional responses of Arabidopsis thaliana plants to As (V) stress.

Abercrombie Jason M JM   Halfhill Matthew D MD   Ranjan Priya P   Rao Murali R MR   Saxton Arnold M AM   Yuan Joshua S JS   Stewart C Neal CN  

BMC plant biology 20080806


<h4>Background</h4>Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress.<h4>Results</h4>Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induc  ...[more]

Similar Datasets

| S-EPMC3676824 | biostudies-literature
| S-EPMC6895597 | biostudies-literature
| S-EPMC7827075 | biostudies-literature
| S-EPMC5027104 | biostudies-literature
| S-EPMC4231836 | biostudies-literature
| S-EPMC4878317 | biostudies-literature
| S-EPMC4585125 | biostudies-literature
| S-EPMC7040063 | biostudies-literature
| S-EPMC5767604 | biostudies-literature
| S-EPMC3123201 | biostudies-literature