Unknown

Dataset Information

0

Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells.


ABSTRACT: Due to the limited understanding of self-renewal and pluripotency related signaling in stem cells, extracting information from genome-wide expression data is not only important but also challenging. With the combined use of two methods, we analyzed a set of microarray data at 11 time points from three mouse embryonic stem cell lines cultivated with and without leukemia inhibitory factor (LIF) for 14 days. Albeit the expression of individual genes in signaling pathways was not noticeably different between cells cultivated with and without LIF, at gene-set level the expression of ERK/MAPK (but not JAK/STAT) and cell cycle related genes was found significantly enriched in cells cultivated with LIF. This indicates that the Ras/Raf/ERK pathway, in addition to JAK/STAT, may also be a key player to carry on external LIF signal into mouse embryonic stem cells to promote self-renewal. When data at the first 7 time points were compared with data at the last 4 time points, the expression of several cell cycle related gene sets was apparently enriched in all three cell lines, indicating the active cell proliferation in the first 2 days. Compared with the slight decay of Oct4/Nanog/Sox2 during the 14 days, the expression of cell differentiation genes such as Gata4/6 underwent a drastic increase, which indicates that the upregulated expression of cell differentiation genes may better reflect the loss of self renewal than the down regulated expression of the stemness indicators Oct4, Sox2 and Nanog. Apart from differential expression and gene set enrichment analyses, a clustering algorithm was also used to classify genes into co-expression clusters. The possible regulation of two clusters, whose expression was most changed during cell culture from very low to very high, was explored. The drastic changes of these genes, including Slc39a8 which was a potential indicator of cell differentiation, in contrast the slight changes of self-renewal genes, imply that differentiation may be the default fate of stem cells and self-renewal may rely on a maintenance mechanism. When that mechanism weakens, cell differentiation begins.

SUBMITTER: Zhu H 

PROVIDER: S-EPMC2553326 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4640739 | biostudies-literature
| S-EPMC3412034 | biostudies-literature
| S-EPMC2894702 | biostudies-literature
| S-EPMC4720007 | biostudies-other
| S-EPMC5399551 | biostudies-literature
| S-EPMC4614864 | biostudies-other
| S-EPMC4732286 | biostudies-literature
| S-EPMC6406003 | biostudies-literature
| S-EPMC5858226 | biostudies-literature
| S-EPMC8007871 | biostudies-literature