Identification and characterization of the porcine (Sus scrofa) survival motor neuron (SMN1) gene: an animal model for therapeutic studies.
Ontology highlight
ABSTRACT: Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is characterized by the degeneration of the motor neurons of the spinal cord leading to muscle atrophy. SMA is a result of a loss-of-function of the gene survival motor neuron-1 (SMN1). We have chosen to generate a transgenic swine model of SMA for the development and testing of therapeutics and evaluation of toxicology. To this end, we report the first cloning and identification of the swine SMN1 gene and show that there is significant sequence homology between swine and human SMN throughout the coding region. Reverse transcriptase-polymerase chain reaction results demonstrated slight changes in SMN RNA expression during development and in different tissues. In contrast, protein expression profiles were dramatically different based upon different tissues and developmental stages, consistent with human SMN expression. Porcine SMN localization is consistent with human SMN, localizing diffusely within the cytoplasm and in punctate nuclear structures characteristic of nuclear gems. Importantly, transient transfection of porcine SMN1 in 3813 SMA type 1 fibroblasts demonstrate that porcine SMN1 can rescue the deficiency of SMN protein and gem formation in these cells. These studies provide the first characterization of the porcine SMN1 gene and SMN protein and suggest that a transgenic swine SMA model is feasible.
SUBMITTER: Lorson MA
PROVIDER: S-EPMC2556073 | biostudies-literature | 2008 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA