Unknown

Dataset Information

0

Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.


ABSTRACT: The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications. We show that transient hyperglycemia induces long-lasting activating epigenetic changes in the promoter of the nuclear factor kappaB (NF-kappaB) subunit p65 in aortic endothelial cells both in vitro and in nondiabetic mice, which cause increased p65 gene expression. Both the epigenetic changes and the gene expression changes persist for at least 6 d of subsequent normal glycemia, as do NF-kappaB-induced increases in monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 expression. Hyperglycemia-induced epigenetic changes and increased p65 expression are prevented by reducing mitochondrial superoxide production or superoxide-induced alpha-oxoaldehydes. These results highlight the dramatic and long-lasting effects that short-term hyperglycemic spikes can have on vascular cells and suggest that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications.

SUBMITTER: El-Osta A 

PROVIDER: S-EPMC2556800 | biostudies-literature | 2008 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.

El-Osta Assam A   El-Osta Assam A   Brasacchio Daniella D   Yao Dachun D   Pocai Alessandro A   Jones Peter L PL   Roeder Robert G RG   Cooper Mark E ME   Brownlee Michael M  

The Journal of experimental medicine 20080922 10


The current goal of diabetes therapy is to reduce time-averaged mean levels of glycemia, measured as HbA1c, to prevent diabetic complications. However, HbA1c only explains <25% of the variation in risk of developing complications. Because HbA1c does not correlate with glycemic variability when adjusted for mean blood glucose, we hypothesized that transient spikes of hyperglycemia may be an HbA1c-independent risk factor for diabetic complications. We show that transient hyperglycemia induces long  ...[more]

Similar Datasets

| S-EPMC8246238 | biostudies-literature
| S-EPMC8125753 | biostudies-literature
| S-EPMC6557560 | biostudies-literature
| S-EPMC6215169 | biostudies-literature
| S-EPMC3689738 | biostudies-literature
| S-EPMC5651809 | biostudies-other
| S-EPMC4440226 | biostudies-literature
| S-EPMC2572912 | biostudies-literature
| S-EPMC4192605 | biostudies-literature
| S-EPMC6635411 | biostudies-literature