Unknown

Dataset Information

0

Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.


ABSTRACT: A free-energy-based approach is used to describe the mechanism through which chaperonin-containing TCP-1 (CCT) folds the filament-forming cytoskeletal protein actin, which is one of its primary substrates. The experimental observations on the actin folding and unfolding pathways are collated and then re-examined from this perspective, allowing us to determine the position of the CCT intervention on the actin free-energy folding landscape. The essential role for CCT in actin folding is to provide a free-energy contribution from its ATP cycle, which drives actin to fold from a stable, trapped intermediate I3, to a less stable but now productive folding intermediate I2. We develop two hypothetical mechanisms for actin folding founded upon concepts established for the bacterial type I chaperonin GroEL and extend them to the much more complex CCT system of eukaryotes. A new model is presented in which CCT facilitates free-energy transfer through direct coupling of the nucleotide hydrolysis cycle to the phases of actin substrate maturation.

SUBMITTER: Altschuler GM 

PROVIDER: S-EPMC2570749 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6972895 | biostudies-literature
| S-EPMC9113939 | biostudies-literature
| S-EPMC8061729 | biostudies-literature
| S-EPMC9520665 | biostudies-literature
| S-EPMC9772883 | biostudies-literature
| S-EPMC5143341 | biostudies-literature
| S-EPMC4100626 | biostudies-literature
| S-EPMC5010522 | biostudies-literature
| S-EPMC7767469 | biostudies-literature
| S-EPMC8517254 | biostudies-literature