Unknown

Dataset Information

0

Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films.


ABSTRACT: Gene silencing by RNA interference (RNAi) has been shown to represent a recently discovered approach for the treatment of human diseases, including viral infection. A major limitation for the success of therapeutic strategies based on RNAi has been the delivery and shortlasting action of synthetic RNA. Multilayered polyelectrolyte films (MPFs), consisting of alternate layer-by-layer deposition of polycations and polyanions, have been shown to represent an original approach for the efficient delivery of DNA and proteins to target cells. Using hepatitis C virus infection (HCV) as a model, we demonstrate that siRNAs targeting the viral genome are efficiently delivered by MPFs. This delivery method resulted in a marked, dose-dependent, specific, and sustained inhibition of HCV replication and infection in hepatocyte-derived cells. Comparative analysis demonstrated that delivery of siRNAs by MPFs was more sustained and durable than siRNA delivery by standard methods, including electroporation or liposomes. The antiviral effect of siRNA-MPFs was reversed by a hyaluronidase inhibitor, suggesting that active degradation of MPFs by cellular enzymes is required for siRNA delivery. In conclusion, our results demonstrate that cell-degradable MPFs represent an efficient and simple approach for sustained siRNA delivery targeting viral infection. Moreover, this MPF-based delivery system may represent a promising previously undescribed perspective for the use of RNAi as a therapeutic strategy for human diseases.

SUBMITTER: Dimitrova M 

PROVIDER: S-EPMC2571015 | biostudies-literature | 2008 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films.

Dimitrova Maria M   Affolter Christine C   Meyer Florent F   Nguyen Isabelle I   Richard Doriane G DG   Schuster Catherine C   Bartenschlager Ralf R   Voegel Jean-Claude JC   Ogier Joëlle J   Baumert Thomas F TF  

Proceedings of the National Academy of Sciences of the United States of America 20081015 42


Gene silencing by RNA interference (RNAi) has been shown to represent a recently discovered approach for the treatment of human diseases, including viral infection. A major limitation for the success of therapeutic strategies based on RNAi has been the delivery and shortlasting action of synthetic RNA. Multilayered polyelectrolyte films (MPFs), consisting of alternate layer-by-layer deposition of polycations and polyanions, have been shown to represent an original approach for the efficient deli  ...[more]

Similar Datasets

| S-EPMC2522324 | biostudies-literature
| S-EPMC6189713 | biostudies-literature
| S-EPMC6843188 | biostudies-literature
| S-EPMC4041830 | biostudies-literature
| S-EPMC2747809 | biostudies-other
| S-EPMC3115451 | biostudies-literature
| S-EPMC4122565 | biostudies-literature
| S-EPMC7182812 | biostudies-literature
| S-EPMC9581487 | biostudies-literature
| S-EPMC4589783 | biostudies-literature