Project description:Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterised by retinal dystrophy, obesity, post-axial polydactyly, renal dysfunction, learning difficulties and hypogonadism. Many associated minor features can be helpful in making a diagnosis and are important in the clinical management of BBS. The diagnosis is based on clinical findings and can be confirmed by sequencing of known disease-causing genes in 80% of patients. BBS genes encode proteins that localise to the cilia and basal body and are involved in cilia biogenesis and function. Mutations lead to defective cilia accounting in part for the pleiotropic effects observed in BBS. We provide an overview of BBS including the clinical findings, current understanding of cilia biology, and a practical approach to diagnosis, genetic counselling and up-to-date management.
Project description:Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.
Project description:Bardet-Biedl syndrome (BBS) is a rare genetically heterogeneous ciliopathy which accompanies retinitis pigmentosa (RP). However, the BBS5 mutation remains unclear in Iranians with BBS. The purpose of study is to evaluate genetic analyses of a BBS Iranian family using targetted exome sequencing (TES). A male 11-year-old proband and three related family members were recruited. Biochemical tests, electrocardiography and visual acuity testing, such as funduscopic, fundus photography (FP), optical coherence tomography (OCT), and standard electroretinography, were conducted. Molecular analysis and high-throughput DNA sequence analysis were performed. The proband was diagnosed with possible BBS based on the presence of three primary features and two secondary features. The TES analysis of the proband with BBS resulted in the identification of a novel, homozygous splicing variant c. 208+2T>C of the BBS5 gene (NM_152384.2) in this Iranian BBS family. This variant was confirmed and was completely co-segregated with the disease in this family by Sanger sequencing. Thus, we report a novel, homozygous splicing site variant c.208+2T>C in the BBS5 gene for the first time in the Iranian family.
Project description:Bardet-Biedl syndrome (BBS) is genetically heterogeneous with 15 BBS genes currently identified, accounting for approximately 70% of cases. The aim of our study was to define further the spectrum of BBS mutations in a cohort of 44 European-derived American, 8 Tunisian, 1 Arabic, and 2 Pakistani families (55 families in total) with BBS.A total of 142 exons of the first 12 BBS-causing genes were screened by dideoxy sequencing. Cases in which no mutations were found were then screened for BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, and INPP5E.Forty-three mutations, including 8 frameshift mutations, 10 nonsense mutations, 4 splice site mutations, 1 deletion, and 20 potentially or probably pathogenic missense variations, were identified in 46 of the 55 families studied (84%). Of these, 21 (2 frameshift mutations, 4 nonsense mutations, 4 splice site mutations, 1 deletion, and 10 missense variations) were novel. The molecular genetic findings raised the possibility of triallelic inheritance in 7 Caucasian families, 1 Arabian family, and 1 Tunisian patient. No mutations were detected for BBS4, BBS11, BBS13, BBS14, BBS15, RPGRIP1L, CC2D2A, NPHP3, TMEM67, or INPP5E.This mutational analysis extends the spectrum of known BBS mutations. Identification of 21 novel mutations highlights the genetic heterogeneity of this disorder. Differences in European and Tunisian patients, including the high frequency of the M390R mutation in Europeans, emphasize the population specificity of BBS mutations with potential diagnostic implications. The existence of some BBS cases without mutations in any currently identified BBS genes suggests further genetic heterogeneity.
Project description:Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
Project description:The Bardet-Biedl syndrome (BBS) is a significant genetic cause of chronic and end-stage renal failure in children. Despite being a relatively rare recessive condition, BBS has come to prominence during the past few years owing to revelations of primary cilia dysfunction underlying pathogenesis. The study of this multi-system disorder, which includes obesity, cognitive impairment, genito-urinary tract malformations and limb deformities, is beginning to reveal insights into several aspects of mammalian development and organogenesis. Involvement of BBS proteins in disparate pathways such as the non-canonical Wnt and Sonic Hedgehog pathways is highlighting their interplay in disease pathogenesis. Here we review the recent developments in this emerging field, with the emphasis on the renal component of the syndrome and potential future directions.
Project description:The aim of this study was to explore kidney failure (KF) in Bardet-Biedl syndrome (BBS), focusing on high-risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin-like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin-like genes highlighting the value of comprehensive genetic investigation.
Project description:Bardet-Biedl syndrome (BBS) is a rare disorder with a frequency of 1:1,60,000. The disease is inherited in an autosomal recessive manner. Less than 15 cases have been reported from India. We present a case of Bardet-Biedl syndrome presenting to the medical emergency with acute breathlessness because of de-compensated renal failure and salient features such as marked polydactyly, central obesity, retinitis pigmentosa, end-stage renal diseases, and mental retardation. Genetic study showed that the patient had BBS genetic variant 9 (MIM#615896), VUS variant. The patient was primarily treated for end-stage chronic renal failure with hemodialysis. We are reporting this case for its rarity and the presence of a novel genetic variant of an unidentified significance as per genome mapping. BBS is often not diagnosed at all or diagnosed late until end-stage renal failure sets in. Timely diagnosis might not help treat the condition but surely improve the quality of life for the patient.
Project description:BACKGROUND:Bardet-Biedl syndrome (BBS) is an autosomal recessive pleiotropic disorder of the primary cilia that leads to severe visual loss in the teenage years. Approximately 80% of BBS cases are explained by mutations in one of the 21 identified genes. Documented causative mutation types include missense, nonsense, copy number variation (CNV), frameshift deletions or insertions, and splicing variants. METHODS:Whole genome sequencing was performed on a patient affected with BBS for whom no mutations were identified using clinically approved genetic testing of the known genes. Analysis of the WGS was done using internal protocols and publicly available algorithms. The phenotype was defined by retrospective chart review. RESULTS:We document a female affected with BBS carrying the most common BBS1 mutation (BBS1: Met390Arg) on the maternal allele and an insertion of a ~1.7-kb retrotransposon in exon 13 on the paternal allele. This retrotransposon insertion was not automatically annotated by the standard variant calling protocols used. This novel variant was identified by visual inspection of the alignment file followed by specific genome analysis with an available algorithm for transposable elements. CONCLUSION:This report documents a novel mutation type associated with BBS and highlights the importance of systematically performing transposon detection analysis on WGS data of unsolved cases.
Project description:Bardet-Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by retinitis pigmentosa (RP), truncal obesity, cognitive impairment, hypogonadism in men, polydactyly, and renal abnormalities with severe renal dysfunction. Twenty-two causative genes have already been reported for this disorder. In this study, we identified two unrelated Japanese patients with clinical diagnoses of BBS associated with compound heterozygous SCLT1 mutation. Patient 1 was a 10-year-old girl, and patient 2 was a 22-year-old man. Both the patients showed severe renal dysfunction in childhood, RP, mild intellectual disability, short stature, and truncal obesity, without oral aberrations and polydactyly. Patient 2 also had hypogonadism. We identified two missense variants in SCLT1, c.[1218G > A] and [1631A > G], in both the patients by next-generation sequencing. Subsequent cDNA analysis revealed that c.1218G > A affected exon 14 skipping in SCLT1. To date, SCLT1 has been reported as the causative gene of oral-facial-digital syndrome type IX, and Senior-Løken syndrome. The phenotypes of both the present patients were compatible with BBS. These results highlight SCLT1 as an additional candidate for BBS phenotype in an autosomal recessive manner.