Cytomegalovirus infection and interferon-gamma modulate major histocompatibility complex class I expression on neural stem cells.
Ontology highlight
ABSTRACT: Cytomegalovirus (CMV) is the leading transmittable cause of congenital brain abnormalities in children and infection results in fatal ventriculoencephalitis in advanced acquired immunodeficiency syndrome (AIDS) patients. Pathology associated with CMV brain infection is seen predominantly in the periventricular region, an area known to harbor neural stem cells (NSCs). In the present study, using an adult model of murine CMV brain infection, the authors demonstrated that nestin-positive NSCs in the subventricular zone are susceptible to murine CMV infection. Furthermore, primary NSC cultures supported productive murine CMV replication with a 1000-fold increase in viral titers by 5 days post infection (d.p.i). Previous studies from the authors' laboratory demonstrated that CD8 lymphocytes were essential in protecting the brain against murine CMV infection. In the present study, the authors found that interferon (IFN)-gamma treatment increased the expression of major histocompatibility complex (MHC) class I on NSCs. Viral infection, on the other hand, inhibited this IFN-gamma-induced MHC up-regulation. In addition to increasing MHC class I expression, IFN-gamma (but not tumor necrosis factor [TNF]-alpha, interleukin [IL]-1 beta, or IL-10) also suppressed NSC proliferation in vitro. This decrease in proliferation was not accompanied by apoptosis or extracellular release of cellular lactate dehydrogenase (LDH), suggesting that the effects were not due to direct cytotoxicity. These studies demonstrate that NSCs are susceptible to murine CMV infection and inflammatory mediators, such as IFN-gamma, alter cellular characteristics which may have an impact on their reparative functions.
SUBMITTER: Cheeran MC
PROVIDER: S-EPMC2592495 | biostudies-literature | 2008 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA