Project description:High-level resistance to aminoglycosides produced by 16S rRNA methylases in Enterobacteriaceae isolates was investigated. The prevalences of armA in Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae were 0.6%, 3.0%, and 10%, respectively. rmtB was more prevalent than armA. Pulsed-field gel electrophoresis patterns indicated that armA and rmtB have spread horizontally and clonally.
Project description:Organisms producing extended-spectrum beta-lactamases (ESBLs) have been reported in many countries, but there is no information on the prevalence of ESBL-producing members of the family Enterobacteriaceae in Cameroon. A total of 259 Enterobacteriaceae strains were isolated between 1995 and 1998 from patients at the Yaounde Central Hospital in Cameroon. Enterobacterial isolates resistant to extended-spectrum cephalosporin and monobactam were screened for ESBL production by the double-disk (DD) synergy test. Thirty-one (12%) of these Enterobacteriaceae strains were shown to be positive by the DD synergy test, suggesting the presence of ESBLs. Resistance to oxyimino-cephalosporins and monobactams of 12 (38.7%) of the 31 strains-i.e., 6 Klebsiella pneumoniae, 4 Escherichia coli, 1 Citrobacter freundii, and 1 Enterobacter cloacae strain-was transferred to E. coli HK-225 by conjugation. Resistance to gentamicin, gentamicin plus trimethoprim-sulfamethoxazole, or trimethoprim-sulfamethoxazole was cotransferred into 6, 2, and 1 of these transconjugants, respectively. All 12 transconjugants were resistant to amoxicillin, piperacillin, all of the cephalosporins, and aztreonam but remained susceptible to cefoxitin and imipenem. Crude extracts of beta-lactamase-producing transconjugants were able to reduce the diameters of inhibition zones around disks containing penicillins, narrow- to expanded-spectrum cephalosporins or monobactams when tested against a fully susceptible E. coli strain but had no effect on such zones around cefoxitin, imipenem, and amoxicillin-clavulanate disks. The beta-lactamases produced by the 12 tranconjugants turned out to be SHV-12 by DNA sequencing. Therefore, the ESBL SHV-12 is described for the first time in Cameroon.
Project description:The aim of this study, was to characterize the extended-spectrum-β-lactamases (ESBLs) producing clinical strains of Escherichia coli isolated between January 2009 and June 2012 from Algerian hospitals and to determine the prevalence of 16S rRNA methylase among them. Sixty-seven ESBL-producers were detected among the 239 isolates included: 52 CTX-M-15-producers, 5 CTX-M-3-producers, 5 CTX-M-1-producers, 2 CTX-M-14-producers, 2 SHV-12-producers and one TEM-167-producer. Among the ESBL-producing strains twelve harbored 16S rRNA methylase genes: 8 rmtB and 4 armA. rmtB was located on a IncFIA plasmid and armA was located either on a IncL/M or a IncFIA plasmid. RmtB-producing isolates were genotypically related and belonged to the sequence type ST 405 whereas ArmA-producing isolates belonged to ST10, ST 167, and ST 117. This first description of 16S rRNA methylases among E. coli in Algerian hospitals pointed out the necessity to establish control measures to avoid their dissemination.
Project description:Plasmid-mediated AmpC beta-lactamase-producing (pAmpC) Enterobacteriaceae are increasing worldwide, difficult to identify and often confounded with extended-spectrum beta-lactamase (ESBL) producers. The low prevalence precludes routine universal admission screening. Therefore, we evaluated potential risk factors for carriage of pAmpC-producing Enterobacteriaceae that would allow targeted screening to improve yield and reduce cost.We performed a case control study at a tertiary care center from 1/2006 to 12/2010. Cases were adult patients in whom pAmpC-producing Enterobacteriaceae were isolated; controls were chosen among carriers of ESBL-producing Enterobacteriaceae. Both infected and colonized patients were included.Over five years, we identified 40 pAmpC producers in 39 patients among 16,247 screened consecutive isolates of Enterobacteriaceae. The pAmpC prevalence was low (0.25%), but more than 30% of pAmpC carriers received incorrect empirical antibiotic treatment. When compared with 39 ESBL controls, pAmpC carriage was associated with clinically confirmed infections in 74% (versus 51%) (p=0.035), mainly of the urinary tract, previous antibiotic exposure in 63% (versus 36%) (p=0.035) and carriage of a nasogastric tube in 23% (versus 0%) (p=0.002). In the multivariate regression analysis only clinically confirmed infections remained significantly associated with pAmpC carriage (OR 1.44 (95%CI 1.15-2.57)). No other clinical and blood test-associated risk factor allowed discrimination of pAmpC-carrying patients from ESBL controls. The type of acquisition - nosocomial versus community-acquired - was also non-informative for resistance type, as 46% of pAmpC- and 44% of ESBL-producing Enterobacteriaceae were community-acquired.This study could not identify a clinical profile that would allow targeted screening for pAmpC-producing Enterobacteriaceae when compared to ESBL carriers. Because empiric antimicrobial therapy was inappropriate in more than 30%, rapid identification of pAmpC carriers is needed. New microbiological methods are therefore required to simplify rapid and reliable detection of pAmpC carriers.
Project description:Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.
Project description:A prospective cohort study was performed among travelers from the Netherlands to investigate the acquisition of carbapenemase-producing Enterobacteriaceae (CP-E) and extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) and associated risk factors. Questionnaires were administered and rectal swab samples were collected and tested before and after traveler return. Of 370 travelers, 32 (8.6%) were colonized with ESBL-E before trave,; 113 (30.5%) acquired an ESBL-E during travel, and 26 were still colonized 6 months after return. No CP-E were found. Independent risk factors for ESBL-E acquisition were travel to South and East Asia. Multilocus sequence typing showed extensive genetic diversity among Escherichia coli. Predominant ESBLs were CTX-M enzymes. The acquisition rate, 30.5%, of ESBL-E in travelers from the Netherlands to all destinations studied was high. Active surveillance for ESBL-E and CP-E and contact isolation precautions may be recommended at admission to medical facilities for patients who traveled to Asia during the previous 6 months.
Project description:Background: We aimed to investigate the prevalence, molecular epidemiology and prevalence factors for Extended Spectrum ?-Lactamase-producing Enterobacteriaceae (ESBL-E) shedding by race horses. A cross-sectional study was performed involving fecal samples collected from 169 Thoroughbred horses that were housed at a large racing facility in Ontario, Canada. Samples were enriched, plated on selective plates, sub-cultured to obtain pure cultures and ESBL production was confirmed. Bacterial species were identified and antibiotic susceptibility profiles were assessed. E. coli sequence types (ST) and ESBL genes were determined using multilocus sequence type (MLST) and sequencing. Whole genome sequencing was performed to isolates harboring CTX-M-1 gene. Medical records were reviewed and associations were investigated.Results: Adult horses (n?=?169), originating from 16 different barns, were sampled. ESBL-E shedding rate was 12% (n?=?21/169, 95% CI 8-18%); 22 ESBL-E isolates were molecularly studied (one horse had two isolates). The main species was E. coli (91%) and the major ESBL gene was CTX-M-1 (54.5%). Ten different E. coli STs were identified. Sixty-four percent of total isolates were defined as multi-drug resistant. ESBL-E shedding horses originated from 8/16 different barns; whereas 48% (10/21) of them originated from one specific barn. Overall, antibiotic treatment in the previous month was found as a prevalence factor for ESBL-E shedding (p?=?0.016, prevalence OR?=?27.72, 95% CI 1.845-416.555).Conclusions: Our findings demonstrate the potential diverse reservoir of ESBL-E in Thoroughbred race horses. Multi-drug resistant bacteria should be further investigated to improve antibiotic treatment regimens and equine welfare.
Project description:In this study, we characterized the ?-lactamase genes and phenotypic resistance of cephalosporin-resistant Enterobacteriaceae isolated from retail foods in China. Of 1,024 Enterobacteriaceae isolates recovered from raw meat products, aquatic products, raw vegetables, retail-level ready-to-eat (RTE) foods, frozen foods, and mushrooms from 2011 to 2014, 164 (16.0%) showed cefotaxime (CTX) and/or ceftazidime (CAZ) cephalosporin resistance, and 96 (9.4%) showed the extended-spectrum ?-lactamase (ESBL) phenotype. More than 30% isolates were resistant to all antimicrobial agents except carbapenems (MEM 3.1% and IPM 5.2%), cefoxitin (FOX 6.3%), and amoxicillin/clavulanic acid (AMC 26%), and 94.8% of the strains were resistant to up to seven antibiotics. Polymerase chain reaction analysis showed that blaTEM (81.9%) was the most common gene, followed by blaCTX-M (68.1%) and blaSHV (38.9%). Moreover, 16.8% (72/429) of food samples contained ESBL-positive Enterobacteriaceae, with the following patterns: 32.9% (23/70) in frozen foods, 27.2% (5/29) in mushrooms, 17.6% (24/131) in raw meats, 13.3% (4/30) in fresh vegetables, 11.1% (8/72) in RTE foods, and 9.3% (9/97) in aquatic products. In addition, 24 of 217 foods collected in South China (11.1%), 25 of 131 foods collected in North of the Yangtze River region (19.1%), and 23 of 81 foods collected in South of the Yangtze River region (28.4%) were positive for ESBL- Enterobacteriaceae. Conjugation experiments demonstrated that the 22 of 72 isolates were transconjugants that had received the ?-lactamase gene and were resistant to ?-lactam antibiotics as well as some non-?-lactam antibiotics. These findings demonstrated that retail foods may be reservoirs for the dissemination of ?-lactam antibiotics and that resistance genes could be transmitted to humans through the food chain; and the predominant ESBL-producing Enterobacteriaceae in China was isolated from in frozen chicken-meat, followed by frozen pork, cold noodles in sauce, cucumber, raw chicken meat, frozen pasta, brine-soaked chicken and tomato.
Project description:Molecular typing has become indispensable in the detection of nosocomial transmission of bacterial pathogens and the identification of sources and routes of transmission in outbreak settings, but current methods are labor-intensive, are difficult to standardize, or have limited resolution. Whole-genome multilocus sequence typing (wgMLST) has emerged as a whole-genome sequencing (WGS)-based gene-by-gene typing method that may overcome these limitations and has been applied successfully for several species in outbreak settings. In this study, genus-, genetic-complex-, and species-specific wgMLST schemes were developed for Citrobacter spp., the Enterobacter cloacae complex, Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae and used to type a national collection of 1,798 extended-spectrum-beta-lactamase-producing Enterobacteriaceae (ESBL-E) isolates obtained from patients in Dutch hospitals. Genus-, genetic-complex-, and species-specific thresholds for genetic distance that accurately distinguish between epidemiologically related and unrelated isolates were defined for Citrobacter spp., the E. cloacae complex, E. coli, and K. pneumoniae wgMLST was shown to have higher discriminatory power and typeability than in silico MLST. In conclusion, the wgMLST schemes developed in this study facilitate high-resolution WGS-based typing of the most prevalent ESBL-producing species in clinical practice and may contribute to further elucidation of the complex epidemiology of antimicrobial-resistant Enterobacteriaceae wgMLST opens up possibilities for the creation of a Web-accessible database for the global surveillance of ESBL-producing bacterial clones.