Loss of RNase R induces competence development in Legionella pneumophila.
Ontology highlight
ABSTRACT: RNase R is a processive 3'-5' exoribonuclease with a high degree of conservation in prokaryotes. Although some bacteria possess additional hydrolytic 3'-5' exoribonucleases such as RNase II, RNase R was found to be the only predicted one in the facultative intracellular pathogen Legionella pneumophila. This provided a unique opportunity to study the role of RNase R in the absence of an additional RNase with similar enzymatic activity. We investigated the role of RNase R in the biology of Legionella pneumophila under various conditions and performed gene expression profiling using microarrays. At optimal growth temperature, the loss of RNase R had no major consequence on bacterial growth and had a moderate impact on normal gene regulation. However, at a lower temperature, the loss of RNase R had a significant impact on bacterial growth and resulted in the accumulation of structured RNA degradation products. Concurrently, gene regulation was affected and specifically resulted in an increased expression of the competence regulon. Loss of the exoribonuclease activity of RNase R was sufficient to induce competence development, a genetically programmed process normally triggered as a response to environmental stimuli. The temperature-dependent expression of competence genes in the rnr mutant was found to be independent of previously identified competence regulators in Legionella pneumophila. We suggest that a physiological role of RNase R is to eliminate structured RNA molecules that are stabilized by low temperature, which in turn may affect regulatory networks, compromising adaptation to cold and thus resulting in decreased viability.
SUBMITTER: Charpentier X
PROVIDER: S-EPMC2593228 | biostudies-literature | 2008 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA