Unknown

Dataset Information

0

Multigenome DNA sequence conservation identifies Hox cis-regulatory elements.


ABSTRACT: To learn how well ungapped sequence comparisons of multiple species can predict cis-regulatory elements in Caenorhabditis elegans, we made such predictions across the large, complex ceh-13/lin-39 locus and tested them transgenically. We also examined how prediction quality varied with different genomes and parameters in our comparisons. Specifically, we sequenced approximately 0.5% of the C. brenneri and C. sp. 3 PS1010 genomes, and compared five Caenorhabditis genomes (C. elegans, C. briggsae, C. brenneri, C. remanei, and C. sp. 3 PS1010) to find regulatory elements in 22.8 kb of noncoding sequence from the ceh-13/lin-39 Hox subcluster. We developed the MUSSA program to find ungapped DNA sequences with N-way transitive conservation, applied it to the ceh-13/lin-39 locus, and transgenically assayed 21 regions with both high and low degrees of conservation. This identified 10 functional regulatory elements whose activities matched known ceh-13/lin-39 expression, with 100% specificity and a 77% recovery rate. One element was so well conserved that a similar mouse Hox cluster sequence recapitulated the native nematode expression pattern when tested in worms. Our findings suggest that ungapped sequence comparisons can predict regulatory elements genome-wide.

SUBMITTER: Kuntz SG 

PROVIDER: S-EPMC2593573 | biostudies-literature | 2008 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multigenome DNA sequence conservation identifies Hox cis-regulatory elements.

Kuntz Steven G SG   Schwarz Erich M EM   DeModena John A JA   De Buysscher Tristan T   Trout Diane D   Shizuya Hiroaki H   Sternberg Paul W PW   Wold Barbara J BJ  

Genome research 20081103 12


To learn how well ungapped sequence comparisons of multiple species can predict cis-regulatory elements in Caenorhabditis elegans, we made such predictions across the large, complex ceh-13/lin-39 locus and tested them transgenically. We also examined how prediction quality varied with different genomes and parameters in our comparisons. Specifically, we sequenced approximately 0.5% of the C. brenneri and C. sp. 3 PS1010 genomes, and compared five Caenorhabditis genomes (C. elegans, C. briggsae,  ...[more]

Similar Datasets

| S-EPMC6169896 | biostudies-literature
| S-EPMC7200997 | biostudies-literature
| S-EPMC6333500 | biostudies-literature
| S-EPMC7340522 | biostudies-literature
| S-EPMC6562536 | biostudies-literature
| S-EPMC6746799 | biostudies-literature
| S-EPMC2885469 | biostudies-literature
| S-EPMC3107193 | biostudies-literature
| S-EPMC7033740 | biostudies-literature
| S-EPMC3295790 | biostudies-literature