Novel LC-ESI/MS/MS(n) method for the characterization and quantification of 2'-deoxyguanosine adducts of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D linear quadrupole ion trap mass spectrometry.
Ontology highlight
ABSTRACT: An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MS(n)) technique has been developed for the characterization and quantification of 2'-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP-DNA adducts were analyzed by MS/MS and MS(n) scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 10(8) DNA bases, and the limit of quantification (LOQ) was 3 adducts per 10(8) DNA bases in both MS/MS and MS(3) scan modes, using 27 microg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS(3) and MS(4) were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS(3) scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MS(n) scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LC-ESI/MS/MS(n) method is the first reported application on the use of the MS(3) scan mode for the analysis of DNA adducts in vivo.
SUBMITTER: Goodenough AK
PROVIDER: S-EPMC2593646 | biostudies-literature | 2007 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA