Unknown

Dataset Information

0

Ligand-binding pocket shape differences between sphingosine 1-phosphate (S1P) receptors S1P1 and S1P3 determine efficiency of chemical probe identification by ultrahigh-throughput screening.


ABSTRACT: We have studied the sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G-protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through systematic screening of the same libraries, we identified novel selective agonist chemotypes for each of the S1P1 and S1P3 receptors. Ultrahigh-throughput screening (uHTS) for S1P1 was more effective than that for S1P3, with many selective, low nanomolar hits of proven mechanism emerging. Receptor structure modeling and ligand docking reveal differences between the receptor binding pockets, which are the basis for subtype selectivity. Novel selective agonists interact primarily in the hydrophobic pocket of the receptor in the absence of headgroup interactions. Chemistry-space and shape-based analysis of the screening libraries in combination with the binding models explain the observed differential hit rates and enhanced efficiency for lead discovery for S1P1 versus S1P3 in this closely related receptor family.

SUBMITTER: Schurer SC 

PROVIDER: S-EPMC2597349 | biostudies-literature | 2008 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ligand-binding pocket shape differences between sphingosine 1-phosphate (S1P) receptors S1P1 and S1P3 determine efficiency of chemical probe identification by ultrahigh-throughput screening.

Schürer Stephan C SC   Brown Steven J SJ   Gonzalez-Cabrera Pedro J PJ   Schaeffer Marie-Therese MT   Chapman Jacqueline J   Jo Euijung E   Chase Peter P   Spicer Tim T   Hodder Peter P   Rosen Hugh H  

ACS chemical biology 20080701 8


We have studied the sphingosine 1-phosphate (S1P) receptor system to better understand why certain molecular targets within a closely related family are much more tractable when identifying compelling chemical leads. Five medically important G-protein-coupled receptors for S1P regulate heart rate, coronary artery caliber, endothelial barrier integrity, and lymphocyte trafficking. Selective S1P receptor agonist probes would be of great utility to study receptor subtype-specific function. Through  ...[more]

Similar Datasets

| S-EPMC4018108 | biostudies-literature
| S-EPMC5299634 | biostudies-literature
| S-EPMC5650392 | biostudies-literature
| S-EPMC8430949 | biostudies-literature
| S-EPMC3663507 | biostudies-literature
| S-EPMC4014310 | biostudies-literature
| S-EPMC6292590 | biostudies-literature
| S-EPMC4751600 | biostudies-literature
| S-EPMC4684944 | biostudies-literature
| S-EPMC4702096 | biostudies-literature