Unknown

Dataset Information

0

Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity.


ABSTRACT: Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5'-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2'-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.

SUBMITTER: Larson ET 

PROVIDER: S-EPMC2600493 | biostudies-literature | 2008 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity.

Larson Eric T ET   Deng Wei W   Krumm Brian E BE   Napuli Alberto A   Mueller Natascha N   Van Voorhis Wesley C WC   Buckner Frederick S FS   Fan Erkang E   Lauricella Angela A   DeTitta George G   Luft Joseph J   Zucker Frank F   Hol Wim G J WG   Verlinde Christophe L M J CL   Merritt Ethan A EA  

Journal of molecular biology 20080624 4


Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as  ...[more]

Similar Datasets

| S-EPMC7641318 | biostudies-literature
| S-EPMC6677139 | biostudies-literature
| S-EPMC6276119 | biostudies-literature
2011-10-24 | E-GEOD-33151 | biostudies-arrayexpress
2011-10-25 | GSE33151 | GEO
| S-EPMC7253380 | biostudies-literature
| S-EPMC8654218 | biostudies-literature
| S-EPMC6947897 | biostudies-literature
| S-EPMC3873539 | biostudies-literature
2011-10-24 | E-GEOD-33150 | biostudies-arrayexpress