Project description:Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Project description:Merkel cell polyomavirus (MCPyV) causes the highly aggressive and relatively rare skin cancer known as Merkel cell carcinoma (MCC). MCPyV also causes a lifelong yet relatively innocuous infection and is one of 14 distinct human polyomaviruses species. Although polyomaviruses typically do not cause illness in healthy individuals, several can cause catastrophic diseases in immunocompromised hosts. MCPyV is the only polyomavirus clearly associated with human cancer. How MCPyV causes MCC and what oncogenic events must transpire to enable this virus to cause MCC is the focus of this essay.This article is part of the themed issue 'Human oncogenic viruses'.
Project description:BACKGROUND: Merkel cell carcinoma (MCC) is a rare but very aggressive human malignancy of elderly or immunosuppressed patients. Clonal integration of a new human polyomavirus, the Merkel cell polyomavirus (MCPyV), has been reported in MCC patients. The main objective of the study was the detection of MCPyV and viral expression in clinical samples of Italian patients who were diagnosed MCC. FINDINGS: DNA and RNA were extracted from nine MCCs to detect the presence of MCPyV. Viral large T gene (LT1 and LT3), and viral capsid gene (VP1) were detected by polymerase chain reaction (PCR) based methods, and the amplified PCR products were subjected to direct sequencing. The presence of viral T antigen and/or viral capsid DNA sequences was demonstrated in eight of the nine MCC lesions, whereas RNA transcripts were detected in three MCCs. CONCLUSIONS: These findings indicate a potential role of MCPyV in the pathogenesis of at least a subset of MCCs.
Project description:We investigated whether Merkel cell carcinoma (MCC) patients in France carry Merkel cell polyomavirus (MCPyV) and then identified strain variations. All frozen MCC specimens and 45% of formalin-fixed and paraffin-embedded specimens, but none of the non-MCC neuroendocrine carcinomas specimens, had MCPyV. Strains from France and the United States were similar.
Project description:BackgroundProkineticin-1 (PROK1) and prokineticin-2 (PROK2) are chemokine-like proteins that may influence cancer growth by regulating host defence and angiogenesis. Their significance in viral infection-associated cancer is incompletely understood. We studied prokineticins in Merkel cell carcinoma (MCC), a skin cancer linked with Merkel cell polyomavirus (MCPyV) infection.MethodsCarcinoma cell expression of PROK1 and PROK2 and their receptors (PROKR1 and PROKR2) was investigated with immunohistochemistry, and tumour PROK1 and PROK2 mRNA content with quantitative PCR from 98 MCCs. Subsets of tumour infiltrating leukocytes were identified using immunohistochemistry.ResultsMerkel cell polyomavirus-positive MCCs had higher than the median PROK2 mRNA content, whereas MCPyV-negative MCCs contained frequently PROK1 mRNA. Cancers with high tumour PROK2 mRNA content had high counts of tumour infiltrating macrophages (CD68+ and CD163+ cells). Patients with higher than the median PROK2 mRNA content had 44.9% 5-year survival compared with 23.5% among those with a smaller content (hazard ratio (HR): 0.53; 95% confidence interval (CI): 0.34-0.84; P=0.005), whereas the presence of PROK1 mRNA in tumour was associated with unfavourable survival (P=0.052).ConclusionsThe results suggest that prokineticins are associated with MCPyV infection and participate in regulation of the immune response in MCC, and may influence outcome of MCC patients.
Project description:BackgroundMerkel cell polyomavirus (MCPyV) has been detected in approximately 75% of patients with the rare skin cancer Merkel cell carcinoma. We investigated the prevalence of antibodies against MCPyV in the general population and the association between these antibodies and Merkel cell carcinoma.MethodsMultiplex antibody-binding assays were used to assess levels of antibodies against polyomaviruses in plasma. MCPyV VP1 antibody levels were determined in plasma from 41 patients with Merkel cell carcinoma and 76 matched control subjects. MCPyV DNA was detected in tumor tissue specimens by quantitative polymerase chain reaction. Seroprevalence of polyomavirus-specific antibodies was determined in 451 control subjects. MCPyV strain-specific antibody recognition was investigated by replacing coding sequences from MCPyV strain 350 with those from MCPyV strain w162.ResultsWe found that 36 (88%) of 41 patients with Merkel cell carcinoma carried antibodies against VP1 from MCPyV w162 compared with 40 (53%) of the 76 control subjects (odds ratio adjusted for age and sex = 6.6, 95% confidence interval [CI] = 2.3 to 18.8). MCPyV DNA was detectable in 24 (77%) of the 31 Merkel cell carcinoma tumors available, with 22 (92%) of these 24 patients also carrying antibodies against MCPyV. Among 451 control subjects from the general population, prevalence of antibodies against human polyomaviruses was 92% (95% CI = 89% to 94%) for BK virus, 45% (95% CI = 40% to 50%) for JC virus, 98% (95% CI = 96% to 99%) for WU polyomavirus, 90% (95% CI = 87% to 93%) for KI polyomavirus, and 59% (95% CI = 55% to 64%) for MCPyV. Few case patients had reactivity against MCPyV strain 350; however, indistinguishable reactivities were found with VP1 from strain 350 carrying a double mutation (residues 288 and 316) and VP1 from strain w162.ConclusionInfection with MCPyV is common in the general population. MCPyV, but not other human polyomaviruses, appears to be associated with Merkel cell carcinoma.
Project description:Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.
Project description:Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer associated with high mortality. Merkel cell polyomavirus (MCV), discovered in 2008, is associated with ~80% of MCC. The MCV large tumor (LT) oncoprotein upregulates the cellular oncoprotein survivin through its conserved retinoblastoma protein-binding motif. We confirm here that YM155, a survivin suppressor, is cytotoxic to MCV-positive MCC cells in vitro at nanomolar levels. Mouse survival was significantly improved for NOD-Scid-Gamma mice treated with YM155 in a dose and duration dependent manner for 3 of 4 MCV-positive MCC xenografts. One MCV-positive MCC xenograft (MS-1) failed to significantly respond to YM155, which corresponds with in vitro dose-response activity. Combination treatment of YM155 with other chemotherapeutics resulted in additive but not synergistic cell killing of MCC cell lines in vitro. These results suggest that survivin targeting is a promising therapeutic approach for most but not all MCV-positive MCCs.
Project description:Merkel cell carcinoma (MCC) is the most aggressive skin cancer. Recently, it was demonstrated that human Merkel cell polyomavirus (MCV) is clonally integrated in approximately 80% of MCC tumors. However, direct evidence for whether oncogenic viral proteins are needed for the maintenance of MCC cells is still missing. To address this question, we knocked down MCV T-antigen (TA) expression in MCV-positive MCC cell lines using three different short hairpin RNA (shRNA)-expressing vectors targeting exon 1 of the TAs. The MCC cell lines used include three newly generated MCV-infected cell lines and one MCV-negative cell line from MCC tumors. Notably, all MCV-positive MCC cell lines underwent growth arrest and/or cell death upon TA knockdown, whereas the proliferation of MCV-negative cell lines remained unaffected. Despite an increase in the number of annexin V-positive, 7-amino-actinomycin D (7-AAD)-negative cells upon TA knockdown, activation of caspases or changes in the expression and phosphorylation of Bcl-2 family members were not consistently detected after TA suppression. Our study provides the first direct experimental evidence that TA expression is necessary for the maintenance of MCV-positive MCC and that MCV is the infectious cause of MCV-positive MCC.
Project description:Merkel cell polyomavirus (MCPyV) was recently discovered in Merkel cell carcinoma (MCC), a clinically and pathologically heterogeneous malignancy of dermal neuroendocrine cells. To investigate this heterogeneity, we developed a tissue microarray (TMA) to characterize immunohistochemical staining of candidate tumor cell proteins and a quantitative PCR assay to detect MCPyV and measure viral loads. MCPyV was detected in 19 of 23 (74%) primary MCC tumors, but 8 of these had less than 1 viral copy per 300 cells. Viral abundance of 0.06-1.2 viral copies/cell was directly related to presence of retinoblastoma gene product (pRb) and terminal deoxyribonucleotidyl transferase (TdT) by immunohistochemical staining (p < or = 0.003). Higher viral abundance tumors tended to be associated with less p53 expression, younger age at diagnosis and longer survival (p < or = 0.08). These data suggest that MCC may arise through different oncogenic pathways, including ones independent of pRb and MCPyV.