Abelson tyrosine kinase facilitates Salmonella enterica serovar Typhimurium entry into epithelial cells.
Ontology highlight
ABSTRACT: The intracellular gram-negative bacterial pathogen Salmonella enterica serovar Typhimurium gains entry into nonphagocytic cells by manipulating the assembly of the host actin cytoskeleton. S. enterica serovar Typhimurium entry requires a functional type III secretion system, a conduit through which bacterial effector proteins are directly translocated into the host cytosol. We and others have previously reported the enhancement of tyrosine kinase activities during Salmonella serovar Typhimurium infection; however, neither specific kinases nor their targets have been well characterized. In this study, we investigated the roles of the cellular Abelson tyrosine kinase (c-Abl) and the related protein Arg in the context of serovar Typhimurium infection. We found that bacterial internalization was inhibited by more than 70% in cells lacking both c-Abl and Arg and that treatment of wild-type cells with a pharmaceutical inhibitor of the c-Abl kinase, STI571 (imatinib), reduced serovar Typhimurium invasion efficiency to a similar extent. Bacterial infection led to enhanced phosphorylation of two previously identified c-Abl substrates, the adaptor protein CT10 regulator of kinase (CrkII) and the Abelson-interacting protein Abi1, a component of the WAVE2 complex. Furthermore, overexpression of the nonphosphorylatable form of CrkII resulted in decreased invasion. Taken together, these findings indicate that c-Abl is activated during S. enterica serovar Typhimurium infection and that its phosphorylation of multiple downstream targets is functionally important in bacterial internalization.
SUBMITTER: Ly KT
PROVIDER: S-EPMC2612273 | biostudies-literature | 2009 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA