Unknown

Dataset Information

0

Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data.


ABSTRACT: This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying case subjects (into "obese" and "nonobese") according to median BMI (30.2 kg/m(2)). Replication of signals in which alternative case-ascertainment strategies generated marked effect size heterogeneity in type 2 diabetes association signal was sought in additional samples.In the "obese-type 2 diabetes" scan, FTO variants had the strongest type 2 diabetes effect (rs8050136: relative risk [RR] 1.49 [95% CI 1.34-1.66], P = 1.3 x 10(-13)), with only weak evidence for TCF7L2 (rs7901695 RR 1.21 [1.09-1.35], P = 0.001). This situation was reversed in the "nonobese" scan, with FTO association undetectable (RR 1.07 [0.97-1.19], P = 0.19) and TCF7L2 predominant (RR 1.53 [1.37-1.71], P = 1.3 x 10(-14)). These patterns, confirmed by replication, generated strong combined evidence for between-stratum effect size heterogeneity (FTO: P(DIFF) = 1.4 x 10(-7); TCF7L2: P(DIFF) = 4.0 x 10(-6)). Other signals displaying evidence of effect size heterogeneity in the genome-wide analyses (on chromosomes 3, 12, 15, and 18) did not replicate. Analysis of the current list of type 2 diabetes susceptibility variants revealed nominal evidence for effect size heterogeneity for the SLC30A8 locus alone (RR(obese) 1.08 [1.01-1.15]; RR(nonobese) 1.18 [1.10-1.27]: P(DIFF) = 0.04).This study demonstrates the impact of differences in case ascertainment on the power to detect and replicate genetic associations in genome-wide association studies. These data reinforce the notion that there is substantial etiological heterogeneity within type 2 diabetes.

SUBMITTER: Timpson NJ 

PROVIDER: S-EPMC2628627 | biostudies-literature | 2009 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Objective</h4>This study examined how differences in the BMI distribution of type 2 diabetic case subjects affected genome-wide patterns of type 2 diabetes association and considered the implications for the etiological heterogeneity of type 2 diabetes.<h4>Research design and methods</h4>We reanalyzed data from the Wellcome Trust Case Control Consortium genome-wide association scan (1,924 case subjects, 2,938 control subjects: 393,453 single-nucleotide polymorphisms [SNPs]) after stratifying  ...[more]

Similar Datasets

| S-EPMC3438926 | biostudies-other
| S-EPMC4568008 | biostudies-literature
| S-EPMC2672416 | biostudies-literature
| S-EPMC7771094 | biostudies-literature
| S-EPMC2682673 | biostudies-literature
| S-EPMC3888264 | biostudies-literature
| S-EPMC4947384 | biostudies-literature
| S-EPMC8692336 | biostudies-literature
| S-EPMC1995610 | biostudies-literature
| S-EPMC6428872 | biostudies-literature