Project description:The snail Biomphalaria glabrata (Gastropoda, Mollusca) is an important intermediate host for the human parasite Schistosoma mansoni (Digenea, Trematoda). Anti-pathogen responses of B. glabrata were studied towards a better understanding of snail immunity and host-parasite compatibility. Open reading frame ESTs (ORESTES) were sampled from different transcriptomes of M line strain B. glabrata, 12h post-challenge with Escherichia coli (Gram-negative), Micrococcus luteus (Gram-positive) bacteria or compatible S. mansoni, and controls. The resulting 3123 ORESTES represented 2129 unique sequences (373 clusters, 1756 singletons). Of these, 175 (8.1%) were putative defense factors, including lectins, antimicrobial peptides and components of various immune-effector systems. Comparison of biological processes (GO-terms) within different transcriptomes indicated that B. glabrata increased oxygen transport and metal binding in reaction to all challenges. Comprehensive comparisons of transcriptomes revealed that responses of B. glabrata against bacteria were similar to each other and differed from the ineffective response to S. mansoni. Furthermore, the response to S. mansoni infection was less comprehensive than that to bacteria. Many novel (unknown) sequences were recovered in association with particular challenges. B. glabrata possesses multi-faceted, potent immune defenses. This agrees with the notion that S. mansoni is capable of immune-evasion and prevents effective host defense responses in order to survive in B. glabrata. Future analysis of the numerous unknown sequences recovered from challenged snails may reveal novel immune factors and provide increased understanding of immunity of B. glabrata in relation to parasite-host compatibility.
Project description:Two surveys conducted in 2017 and 2018 demonstrated Biomphalaria pfeifferi snails in Lake Malawi in Africa. Epidemiologic examination of 175 local children at 3 primary schools confirmed emergence of intestinal schistosomiasis. These findings highlight autochthonous transmission of Schistosoma mansoni flukes in Lake Malawi and the need to revise international travel advice.
Project description:BackgroundBiomphalaria glabrata is one of the main intermediate hosts of Schistosoma mansoni, the most widespread species of Schistosoma. Our previous studies proved that alternative oxidase (AOX), the terminal oxidase in the mitochondrial respiratory chain, widely exists in several species of intermediate host snails of Schistosoma. Meanwhile, inhibition of AOX activity in Oncomelania hupensis snails could dramatically enhance the molluscicidal effect of niclosamide. As a hermaphroditic aquatic mollusc, the high fecundity and population density of B. glabrata increase the difficulty of snail control, which is one of the critical strategies for schistosomiasis elimination. The present study aimed to investigate the possible role of AOX in the development and fecundity of B. glabrata snail, which could be manipulated more manageable than other species of intermediate host snails of Schistosoma.MethodsThe dynamic expression of the AOX gene was investigated in different developmental stages and tissues of B. glabrata, with morphological change and oviposition behaviour observed from juvenile to adult snails. Furtherly, dsRNA-mediated knockdown of BgAOX mRNA and the AOX protein activity inhibiting was performed to investigate the effect of AOX on the development and oviposition of snails.ResultsThe BgAOX gene expression profile is highly related to the development from late juveniles to adults, especially to the reproductive system of snails, with a positive correlation of 0.975 between egg production and BgAOX relative expression in ovotestis of snails. The inhibition of BgAOX at the transcriptional level and AOX activity could efficiently inhibit snail growth. However, the interference at the BgAOX protein activity level led to more severe tissue damage and more significant inhibition of oviposition than at the transcriptional level. This inhibition of growth and oviposition decreased gradually with the increase in the snail size.ConclusionsThe inhibition of AOX could efficiently disrupt the development and oviposition of B. glabrata snails, and the intervention targeting AOX at the juvenile stage is more effective for snails. This investigation explored the role of AOX in the growth and development of snails. It would benefit snail control in the future by providing a potential target while using molluscicides more efficiently.
Project description:Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.
Project description:Schistosomes develop successfully in susceptible snails but are encapsulated and killed in resistant ones. Mechanism(s) shaping these outcomes involves the parasites ability to evade the snail's defenses. RNA analysis from resistant (BS-90), non-susceptible (LAC2) and susceptible (NMRI) juvenile Biomphalaria glabrata to Schistosoma mansoni revealed that stress-related genes, heat shock protein 70 (Hsp 70) and reverse transcriptase (RT), were dramatically co-induced early in susceptible snails, but not in resistant/non-susceptible ones. These transcripts were, however, down regulated upon exposure to irradiated parasites although penetration behavior of irradiated vs. normal parasites were the same, indicating that Hsp 70 and RT regulation was elicited by infection and not injury. Understanding molecular events involved in stress response transcriptional regulation of Hsp 70 in juvenile snails could pave a way towards the identification of genes involved in schistosome/snail interactions.
Project description:BackgroundClausiliidae (door snails) are gastropods with a very high diversity concerning shell morphology, especially of their complex closing apparatus, which provides the most important diagnostic traits for classification of taxa. Due to the high variability, a high number of taxa has been described, though their systematics and taxonomy is partially controversially discussed. Montenegrina is the second most speciose door snail genus in Europe. It is an obligate rock-dwelling land snail and has, compared to its complex systematics, a rather small distribution range in the western parts of the Balkan Peninsula. The different taxa themselves show a very narrow and patchy distribution range. As Montenegrina is comprehensively sampled over the whole distribution range, it is a perfect study system for general questions on speciation and morphological differentiation in land snails. To study the amount of gene flow between geographically close or co-occurring populations, highly polymorphic markers are needed.ResultsThirteen microsatellite loci with a tetranucleotid repeat were isolated and tested in three geographically close Montenegrina populations (two populations of M. dofleini prespaensis from the Prespa Lake, n = 35 and one population from M. stankovici from the Ohrid Lake, n = 20). The number of alleles per locus ranged from 2 to 27. No significant linkage disequilibria between the same two loci were found in all three tested populations. The deviation from Hardy-Weinberg equilibrium reveal only for two loci a significant deviation from HWE in more than one population (Mont_5483 and Mont_4477).ConclusionThe 13 newly established genetic markers will help to gain better insights to the population genetic structure of Montenegrina and might reveal new results about speciation processes in co-occurring taxa. Furthermore, these microsatellite loci could also be tested in other clausiliid species.
Project description:Intestinal schistosomiasis is hyperendemic in many sub-Saharan African countries. In Uganda, it is endemic at both Lake Albert (LA) and Lake Victoria (LV) and caused by S. mansoni that uses Biomphalaria snails as obligatory intermediate snail hosts. To shed light on local patterns of infection, we utilised two PCR-based methods to detect S. mansoni within Biomphalaria spp. as collected at the Ugandan shorelines of Lake Albert and Lake Victoria from 2009-2010. Overall, at our Lake Albert sites, the mean infection prevalence was 12.5% (15 of 120 snails), while at our Lake Victoria sites the prevalence was 5% (3 of 60 snails). At our Lake Albert sites, the highest infection prevalence of 13.3% (8 of 60 snails) was at Walukuba, while at our Lake Victoria sites, the highest infection prevalence of 10% (2 of 20 snails) was at Lwanika. Three species of Biomphalaria, B. pfeifferi, B. stanleyi and B. sudanica, were identified at our Lake Albert collection sites, while only a single species, B. choanomphala, was identified at our Lake Victoria collection sites. Biomphalaria stanleyi (2 of 20 snails; 15%) had the highest infection prevalence, followed by B. sudanica (5 of 60 snails; 13.3%), B. pfeifferi (4 of 40 snails; 10%) and B. choanomphala (3 of 60 snails; 5%). Of the Biomphalaria species identified, B. choanomphala had the highest haplotype (gene) diversity score, followed by B. stanleyi, B. sudanica and B. pfeifferi. Sites with a higher mean prevalence of S. mansoni infection had higher intra-species haplotype diversity scores than sites with a lower mean prevalence. The wet seasons (LA: 13.3%; LV: 8.7%) had a consistently higher mean infection prevalence of S. mansoni than the dry seasons (LA: 9.5%; LV: 5%) for all species and all sites tested at both Lake Albert (n = 480) and Lake Victoria (n = 320), though the difference was not statistically significant.
Project description:Resistance or susceptibility of the snail host Biomphalaria glabrata to Schistosoma mansoni is determined by the genetics of both the snail and parasite. Although Mendelian genetics governs adult resistance to infection, juvenile resistance and susceptibility are complex traits. In this study, suppression subtractive hybridization was used to construct forward and reverse cDNA libraries to identify genes involved in the immediate response of juvenile resistant (BS-90), non-susceptible (LAC2) snails, and susceptible (NMRI) snails after early exposure to S. mansoni. Expressed Sequence Tags (ESTs) were generated from the repertoire of enriched transcripts. In resistant snails, several ESTs corresponded to transcripts involved in immune regulation/defense response. While no defense related transcripts were found among juvenile susceptible snail ESTs, we detected transcripts involved in negative regulation of biological process/morphogenesis/proliferation. Differential gene expression and temporal regulation of representative transcripts were compared among snails pre- and post-exposure to either normal or attenuated miracidia using quantitative real time RT-PCR. Results showed that several transcripts, such as fibrinolytic C terminal domain, cytidine deaminase, macrophage expressed gene 1, protein kinase C receptor, anti-microbial peptide; theromacin and Fas remained up-regulated regardless of whether or not snails were exposed to normal or attenuated miracidia. While ESTs related to C-type lectin and low-density lipoprotein receptor were induced only by exposure to normal miracidia. By comparing changes in gene expression between resistant and susceptible juvenile snails responding either to normal or attenuated parasites, we can conclude that the transcription of genes associated with the intra-dermal penetration process of the snail host by invading miracidia may need to be taken into account when assessing differential gene expression between resistant and susceptible strains of B.glabrata in relation to S. mansoni exposure.
Project description:Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.5-2g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development.
Project description:Daphnia magna and freshwater snails are used as delicate bioindicators of contaminated aquatic habitats. Due to their distinctive characteristics, selenium oxide nanoparticles (SeONPs) have received interest regarding their possible implications on aquatic environments. The current study attempted to investigate the probable mechanisms of fungal-mediated selenium nanoparticles' ecotoxicological effects on freshwater Biomphalaria alexandrina snails and Daphnia magna. SeONPs revealed a toxicological impact on D. magna, with a half-lethal concentration (LC50) of 1.62 mg/L after 24 h and 1.08 mg/L after 48 h. Survival, fecundity, and reproductive rate were decreased in B. alexandrina snails exposed to SeONPs. Furthermore, the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were markedly elevated, while albumin and total protein levels decreased. Histopathological damage in the hermaphrodite and digestive glands was detected by light, electron microscopy, and immunohistochemistry studies. The molecular docking study revealed interactions of selenium oxide with the ALT and AST. In conclusion, B. alexandrina snails and D. magna could be employed as bioindicators of selenium nanomaterial pollution in aquatic ecosystems. This study emphasizes the possible ecological effects of releasing SeONPs into aquatic habitats, which could serve as motivation for regulatory organizations to monitor and control the use and disposal of SeONPs in industry.