Unknown

Dataset Information

0

Small GTPase determinants for the Golgi processing and plasmalemmal expression of human ether-a-go-go related (hERG) K+ channels.


ABSTRACT: The pro-arrhythmic Long QT syndrome (LQT) is linked to 10 different genes (LQT1-10). Approximately 40% of genotype-positive LQT patients have LQT2, which is characterized by mutations in the human ether-a-go-go related gene (hERG). hERG encodes the voltage-gated K(+) channel alpha-subunits that form the pore of the rapidly activating delayed rectifier K(+) current in the heart. The purpose of this study was to elucidate the mechanisms that regulate the intracellular transport or trafficking of hERG, because trafficking is impaired for about 90% of LQT2 missense mutations. Protein trafficking is regulated by small GTPases. To identify the small GTPases that are critical for hERG trafficking, we coexpressed hERG and dominant negative (DN) GTPase mutations in HEK293 cells. The GTPases Sar1 and ARF1 regulate the endoplasmic reticulum (ER) export of proteins in COPII and COPI vesicles, respectively. Expression of DN Sar1 inhibited the Golgi processing of hERG, decreased hERG current (I(hERG)) by 85% (n > or = 8 cells per group, *, p < 0.01), and reduced the plasmalemmal staining of hERG. The coexpression of DN ARF1 had relatively small effects on hERG trafficking. Surprisingly, the coexpression of DN Rab11B, which regulates the endosomal recycling, inhibited the Golgi processing of hERG, decreased I(hERG) by 79% (n > or = 8 cells per group; *, p < 0.01), and reduced the plasmalemmal staining of hERG. These data suggest that hERG undergoes ER export in COPII vesicles and endosomal recycling prior to being processed in the Golgi. We conclude that hERG trafficking involves a pathway between the ER and endosomal compartments that influences expression in the plasmalemma.

SUBMITTER: Delisle BP 

PROVIDER: S-EPMC2631954 | biostudies-literature | 2009 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Small GTPase determinants for the Golgi processing and plasmalemmal expression of human ether-a-go-go related (hERG) K+ channels.

Delisle Brian P BP   Underkofler Heather A S HAS   Moungey Brooke M BM   Slind Jessica K JK   Kilby Jennifer A JA   Best Jabe M JM   Foell Jason D JD   Balijepalli Ravi C RC   Kamp Timothy J TJ   January Craig T CT  

The Journal of biological chemistry 20081124 5


The pro-arrhythmic Long QT syndrome (LQT) is linked to 10 different genes (LQT1-10). Approximately 40% of genotype-positive LQT patients have LQT2, which is characterized by mutations in the human ether-a-go-go related gene (hERG). hERG encodes the voltage-gated K(+) channel alpha-subunits that form the pore of the rapidly activating delayed rectifier K(+) current in the heart. The purpose of this study was to elucidate the mechanisms that regulate the intracellular transport or trafficking of h  ...[more]

Similar Datasets

| S-EPMC2775857 | biostudies-literature
| S-EPMC2241608 | biostudies-literature
| S-EPMC4007811 | biostudies-literature
| S-EPMC2567890 | biostudies-other
| S-EPMC5042861 | biostudies-literature
| S-EPMC5484391 | biostudies-literature
| S-EPMC3121363 | biostudies-literature
| S-EPMC3187531 | biostudies-literature
| S-EPMC313935 | biostudies-literature
| S-EPMC4658274 | biostudies-literature