Unknown

Dataset Information

0

Differential selection on gene translation efficiency between the filamentous fungus Ashbya gossypii and yeasts.


ABSTRACT:

Background

The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon usage patterns were compared to identify orthologous genes with different gene regulation between A. gossypii and nine closely related yeast species.

Results

Here we identified 3,151 orthologous genes between A. gossypii and nine yeast species. Two groups of genes with significant differences in codon usage (gene translation efficiency) were identified between A. gossypii and yeasts. 333 genes (Group I) and 552 genes (Group II) have significantly higher translation efficiency in A. gossypii and yeasts, respectively. Functional enrichment and pathway analysis show that Group I genes are significantly enriched with cell cycle functions whereas Group II genes are biased toward metabolic functions.

Conclusion

Because translation efficiency of a gene is closely related to its functional importance, the observed functional distributions of orthologous genes with different translation efficiency might account for phenotypic differentiation between A. gossypii and yeast species. The results shed light on the mechanisms for pseudohyphal growth in pathogenic yeast species.

SUBMITTER: Jiang H 

PROVIDER: S-EPMC2632675 | biostudies-literature | 2008 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differential selection on gene translation efficiency between the filamentous fungus Ashbya gossypii and yeasts.

Jiang Huifeng H   Zhang Yue Y   Sun Jun J   Wang Wen W   Gu Zhenglong Z  

BMC evolutionary biology 20081229


<h4>Background</h4>The filamentous fungus Ashbya gossypii grows into a multicellular mycelium that is distinct from the unicellular morphology of its closely related yeast species. It has been proposed that genes important for cell cycle regulation play central roles for such phenotypic differences. Because A. gossypii shares an almost identical set of cell cycle genes with the typical yeast Saccharomyces cerevisiae, the differences might occur at the level of orthologous gene regulation. Codon  ...[more]

Similar Datasets

| S-EPMC3232731 | biostudies-literature
| S-EPMC519154 | biostudies-literature
| S-EPMC207006 | biostudies-literature
| S-EPMC3571309 | biostudies-literature
| S-EPMC6801137 | biostudies-literature
| S-EPMC4149541 | biostudies-literature
| S-EPMC1461536 | biostudies-other
| S-EPMC1345653 | biostudies-literature
2007-05-04 | PRD000759 | Pride
| S-EPMC193632 | biostudies-literature