Project description:Ehrlichia chaffeensis, the causative agent of human monocytic ehrlichiosis, is transmitted by Amblyomma americanum ticks, which are most abundant in the southern United States. Because serologic evidence suggests that residents of Connecticut are exposed to E. chaffeensis, A. americanum ticks were collected in Connecticut and Rhode Island for PCR analysis to detect E. chaffeensis DNA. Eight of 106 (7.6%) A. americanum ticks from Connecticut and 6 of 52 (11.5%) from Rhode Island contained E. chaffeensis DNA. Thus, E. chaffeensis is present in ticks in southern New England and transmission of E. chaffeensis may occur there.
Project description:Vector-borne pathogens are responsible for serious emerging diseases and have been widely described in wildlife. Ehrlichia chaffeensis causes the zoonotic "monocytic ehrlichiosis" in humans, is transmitted by the tick Amblyomma americanum and its reservoir host is the white-tailed deer (Odocoileus virginianus) in North America. Little is known about the native reservoir and the tick vectors involved in the transmission cycle in South America. We report here the detection of E. chaffeensis in a study on marsh deer (Blastocerus dichotomus) mortality in Argentina, in different time periods between 2007 and 2016. Four deer, from two distinct populations, were positive for E. chaffeensis through molecular methods. Additionally, the variable-length PCR target (VLPT) region of positive samples was genotyped. Our results provide the first evidence of E. chaffeensis in autochthonous Cervidae from Argentina, contributing to uncover the distribution of this tick-borne infection in South America.
Project description:In 2018, we detected a novel Ehrlichia strain infecting Amblyomma neumanni ticks in Argentina. The novel strain is phylogenetically related to the ruminant pathogen E. ruminantium and represents a potential risk for veterinary and public health because A. neumanni ticks parasitize domestic and wild ruminants and bite humans.
Project description:Ixodid ticks were collected from vegetation and from humans, wild and domestic mammals in a rural area in the semi-arid Argentine Chaco in late spring 2006 to evaluate their potential role as vectors of Spotted Fever Group (SFG) rickettsiae. A total of 233 adult ticks, identified as Amblyomma parvum, Amblyomma tigrinum and Amblyomma pseudoconcolor, was examined for Rickettsia spp. We identified an SFG rickettsia of unknown pathogenicity, "Candidatus Rickettsia sp. strain Argentina", in A. parvum and A. pseudoconcolor by PCR assays targeting gltA, ompA, ompB and 17-kDa outer membrane antigen rickettsial genes. Rickettsia bellii was detected in a host-seeking male of A. tigrinum. Amblyomma parvum is widespread in the study area and is a potential threat to human health.
Project description:Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris, respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis, the Anan strain, and E. canis, respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup.
Project description:BackgroundTick salivary constituents antagonize inflammatory, immune and hemostatic host responses, favoring tick blood feeding and the establishment of tick-borne pathogens in hosts during hematophagy. Amblyomma triste, A. cajennense and A. parvum ticks are very important in veterinary and human health because they are vectors of the etiological agents for several diseases. Insights into the tick salivary components involved in blood feeding are essential to understanding vector-pathogen-host interactions, and transcriptional profiling of salivary glands is a powerful tool to do so. Here, we functionally annotated the sialotranscriptomes of these three Amblyomma species, which allowed comparisons between these and other hematophagous arthropod species.MethodsmRNA from the salivary glands of A. triste, A. cajennense and A. parvum ticks fed on different host species were pyrosequenced on a 454-Roche platform to generate four A. triste (nymphs fed on guinea pigs and females fed on dogs) libraries, one A. cajennense (females fed on rabbits) library and one was A. parvum (females fed on dogs) library. Bioinformatic analyses used in-house programs with a customized pipeline employing standard assembly and alignment algorithms, protein databases and protein servers.ResultsEach library yielded an average of 100,000 reads, which were assembled to obtain contigs of coding sequences (CDSs). The sialotranscriptome analyses of A. triste, A. cajennense and A. parvum ticks produced 11,240, 4,604 and 3,796 CDSs, respectively. These CDSs were classified into over 100 distinct protein families with a wide range of putative functions involved in physiological and blood feeding processes and were catalogued in annotated, hyperlinked spreadsheets. We highlighted the putative transcripts encoding saliva components with critical roles during parasitism, such as anticoagulants, immunosuppressants and anti-inflammatory molecules. The salivary content underwent changes in the abundance and repertoire of many transcripts, which depended on the tick and host species.ConclusionsThe annotated sialotranscriptomes described herein richly expand the biological knowledge of these three Amblyomma species. These comprehensive databases will be useful for the characterization of salivary proteins and can be applied to control ticks and tick-borne diseases.
Project description:A total of 717 ticks collected from southern China were examined by nested PCR for the presence of Ehrlichia chaffeensis. Sixteen (55. 2%) of 29 adult Amblyomma testudinarium ticks and 28 (11.7%) of 240 adult and at least 4.2% of 215 nymphal (pooled specimens) Haemaphysalis yeni ticks tested positive. Four other species of ticks were negative. Selected positive amplicons were confirmed by DNA sequencing.
Project description:The Lone Star tick, Amblyomma americanum, transmits several bacterial pathogens including species of Anaplasma and Ehrlichia. Amblyomma americanum also hosts a number of non-pathogenic bacterial endosymbionts. Recent studies of other arthropod and insect vectors have documented that commensal microflora can influence transmission of vector-borne pathogens; however, little is known about tick microbiomes and their possible influence on tick-borne diseases. Our objective was to compare bacterial communities associated with A. americanum, comparing Anaplasma/Ehrlichia -infected and uninfected ticks. Field-collected questing specimens (n = 50) were used in the analyses, of which 17 were identified as Anaplasma/Ehrlichia infected based on PCR amplification and sequencing of groEL genes. Bacterial communities from each specimen were characterized using Illumina sequencing of 16S rRNA gene amplicon libraries. There was a broad range in diversity between samples, with inverse Simpson's Diversity indices ranging from 1.28-89.5. There were no statistical differences in the overall microbial community structure between PCR diagnosed Anaplasma/Ehrlichia-positive and negative ticks, but there were differences based on collection method (P < 0.05), collection site (P < 0.05), and sex (P < 0.1) suggesting that environmental factors may structure A. americanum microbiomes. Interestingly, there was not always agreement between Illumina sequencing and PCR diagnostics: Ehrlichia was identified in 16S rRNA gene libraries from three PCR-negative specimens; conversely, Ehrlichia was not found in libraries of six PCR-positive ticks. Illumina sequencing also helped identify co-infections, for example, one specimen had both Ehrlichia and Anaplasma. Other taxa of interest in these specimens included Coxiella, Borrelia, and Rickettsia. Identification of bacterial community differences between specimens of a single tick species from a single geographical site indicates that intra-species differences in microbiomes were not due solely to pathogen presence/absence, but may be also driven by vector life history factors, including environment, life stage, population structure, and host choice.
Project description:Important tick-borne diseases include spotted fever group Rickettsia (SFGR), Anaplasma, and Ehrlichia, which cause harm to animal and human health. Ixodidae are the primary vectors of these pathogens. We aimed to analyze the prevalence and genetic diversity of SFGR, Anaplasma, and Ehrlichia species in the Ixodidae in Shaanxi Province, China. Herein, 1,113 adult Ixodidae ticks were collected from domestic cattle and goats, and detected using nested PCR. A total of four Ixodidae species were collected and Ca. R. jingxinensis (20.58%, 229/1113), A. bovis (3.05%, 34/1113), A. capra (3.32%, 37/1113), A. marginale (0.18%, 2/1113), E. sp. Yonaguni138 (0.18%, 2/1113), and a potent novel Ehrlichia species named E. sp. Baoji96 (0.09%, 1/1113) were detected. A. marginale was detected for the first time in Rhipicephalus microplus. E. sp. Baoji96 was closely related to E. chaffeensis and was first identified in Haemaphysalis longicornis. In addition, co-infection with two Rickettsiales pathogens within an individual tick was detected in 10 (1.54%) ticks. This study provides a reference for the formulation of biological control strategies for ticks and tick-borne diseases in Shaanxi Province, and could lead to an improved control effect.