Project description:We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/Munich(T)) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.
Project description:In the present study further characterization of the amplified sequence of the citrate synthase gene of the spotted fever group Rickettsia isolated from Ixodes ricinus ticks in Sweden showed that it has 100% homology with the deposited sequence of the citrate synthase gene of Rickettsia helvetica. The restriction fragment length polymorphism (RFLP) pattern of an amplified 382-bp product of the citrate synthase sequence, defined by primers RpCS877 and RpCS1258, yielded fragments for our isolate that could be visualized as a double band that migrated at approximately 44 bp, another double band at 85 bp, and a single band at nearly 120 bp after digestion with the restriction enzyme AluI. When calculating a theoretical PCR-RFLP pattern of the sequence of the citrate synthase gene of R. helvetica from the known positions where the AluI enzyme cuts, we arrived at the same pattern that was obtained for our isolate, a pattern distinctly different from the previously published PCR-RFLP pattern for R. helvetica. Investigation of 125 living I. ricinus ticks showed a higher prevalence of rickettsial DNA in these ticks than we had found in an earlier study. Rickettsial DNA was detected by amplification of the 16S rRNA gene, for which a seminested primer system consisting of two oligonucleotide primer pairs was used. Of the 125 ticks, some were pooled, giving a total of 82 tick samples, of which 20 were found to be positive for the rickettsial DNA gene investigated. When considering the fact that some of the positive samples were pooled, the minimum possible prevalence in these ticks was 20 of 125 (16%) and the maximum possible prevalence was 46 of 125 (36.8%). These prevalence estimates conform to those of other studies of spotted fever group rickettsiae in hard ticks in Europe.
Project description:BACKGROUND:Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years. RESULTS:The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar. CONCLUSION:Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.
Project description:Rickettsia helvetica, a tick-borne member of the spotted-fever-group rickettsiae, is a suspected pathogen in humans; however, its role in animals is unknown. The aims of this study were to establish a R. helvetica-specific real-time TaqMan PCR assay and apply it to the analysis of tick vectors (to determine potential exposure risk) and blood samples from Canidae and humans (to determine prevalence of infection). The newly designed 23S rRNA gene assay for R. helvetica was more sensitive than a published citrate synthase gene (gltA) assay for several rickettsiae. Blood samples from 884 dogs, 58 foxes, and 214 human patients and 2,073 ticks (Ixodes spp.) collected from either vegetation or animals were analyzed. Although the maximal likelihood estimate of prevalence was 12% in unfed ticks and 36% in ticks collected from animals, none of the 1,156 blood samples tested PCR positive. Ticks from cats were more frequently PCR positive than ticks from dogs. Sequencing of the 23S rRNA and/or the gltA gene of 17 tick pools confirmed the presence of R. helvetica. Additionally, Rickettsia monacensis, which has not been previously found in Switzerland, was identified. In conclusion, R. helvetica was frequently detected in the tick population but not in blood samples. Nevertheless, due to the broad host range of Ixodes ticks and the high rate of infestation with this agent (i.e., R. helvetica was 13 times more frequent in unfed ticks than the tick-borne encephalitis virus), many mammals may be exposed to R. helvetica. The PCR assay described here represents an important tool for studying this topic.
Project description:The genomic DNA of ixodid ticks from western Canada was tested by PCR for the presence of Rickettsia. No rickettsiae were detected in Ixodes sculptus, whereas 18% of the I. angustus and 42% of the Dermacentor andersoni organisms examined were PCR positive for Rickettsia. The rickettsiae from each tick species were characterized genetically using multiple genes. Rickettsiae within the D. andersoni organisms had sequences at four genes that matched those of R. peacockii. In contrast, the Rickettsia present within the larvae, nymphs, and adults of I. angustus had novel DNA sequences at four of the genes characterized compared to the sequences available from GenBank for all recognized species of Rickettsia and all other putative species within the genus. Phylogenetic analyses of the sequence data revealed that the rickettsiae in I. angustus do not belong to the spotted fever, transitional, or typhus groups of rickettsiae but are most closely related to "Candidatus Rickettsia kingi" and belong to a clade that also includes R. canadensis, "Candidatus Rickettsia tarasevichiae," and "Candidatus Rickettsia monteiroi."
Project description:BackgroundTo date, 6 tick-borne rickettsiae pathogenic for humans are known to occur in Africa and 4 of them were first identified in ticks before being recognized as human pathogens.ResultsWe examined 33 and 5 Amblyomma tholloni ticks from African elephants in the Central African Republic and Gabon, respectively, by PCR amplification and sequencing of a part of gltA and ompA genes of the genus Rickettsia. The partial sequences of gltA and ompA genes detected in tick in Gabon had 99.1% similarity with those of R. heilongjiangensis and 97.1% with those of Rickettsia sp. HL-93 strain, respectively. The partial gltA and ompA gene sequences detected in tick in the Central African Republic were 98.9% and 95.1% similar to those of Rickettsia sp. DnS14 strain and R. massiliae, respectively. Phylogenetic analysis showed Rickettsia sp. detected in Gabon clusters with R. japonica and R. heilongjiangensis in a phylogenetic tree based on the partial gltA and ompA genes. The genotype of the Rickettsia sp. detected in the Central African Republic is close to those of R. massiliae group in the phylogenetic tree based on partial gltA gene sequences, and distantly related to other rickettsiae in the tree based on partial ompA gene.ConclusionThe degrees of similarity of partial gltA and ompA genes with recognized species indicate the rickettsiae detected in this study may be new species although we could only study the partial sequences of 2 genes regarding the amount of DNA that was available. We propose the Rickettsia sp. detected in Gabon be provisionally named "Rickettsia sp. stain Davousti" and Rickettsia sp. detected in the Central African Republic be named "Rickettsia sp. strain Uilenbergi".
Project description:Recently, a new rickettsia named 'Candidatus Rickettsia vini' belonging to the spotted fever group has been molecularly detected in Ixodes arboricola ticks in Spain, the Czech Republic, Slovakia and Turkey, with prevalence reaching up to 100 %. The aim of this study was to isolate this rickettsia in pure culture, and to describe it as a new Rickettsia species.A total of 148 ornitophilic nidicolous ticks Ixodes arboricola were collected in a forest near Breclav (Czech Republic) and examined for rickettsiae. Shell vial technique was applied to isolate rickettsiae in Vero cells. Rickettsial isolation was confirmed by optical microscopy and sequencing of partial sequences of the rickettsial genes gltA, ompA, ompB, and htrA. Laboratory guinea pigs and chickens were used for experimental infestations and infections. Animal blood sera were tested by immunofluorescence assay employing crude antigens of various rickettsiae.Rickettsia vini n. sp. was successfully isolated from three males of I. arboricola. Phylogenetic analysis of fragments of 1092, 590, 800, and 497 nucleotides of the gltA, ompA, ompB, and htrA genes, respectively, showed closest proximity of R. vini n. sp. to Rickettsia japonica and Rickettsia heilongjiangensis belonging to the spotted fever group. Experimental infection of guinea pigs and chickens with R. vini led to various levels of cross-reactions of R. vini-homologous antibodies with Rickettsia rickettsii, Rickettsia parkeri, 'Candidatus Rickettsia amblyommii', Rickettsia rhipicephali, Rickettsia bellii, and Rickettsia felis. Laboratory infestations by R. vini-infected I. arboricola larvae on chickens led to no seroconversion to R. vini n. sp., nor cross-reactions with R. rickettsii, R. parkeri, 'Ca. R. amblyommii', R. rhipicephali, R. bellii or R. felis.Our results suggest that R. vini n. sp. is possibly a tick endosymbiont, not pathogenic for guinea pigs and chickens. Regarding specific phenotypic characters and significant differences of DNA sequences in comparison to the most closely related species (R. japonica and R. heilongjiangensis), we propose to classify the isolate as a new species, Rickettsia vini.
Project description:Ixodes spp. ticks are known to occasionally harbour spiroplasmas - helical mycoplasmas in the class Mollicutes; a previous study in Slovakia reported an overall prevalence of Spiroplasma ixodetis of 3% in Ixodes ricinus. In the present study, extracts of unfed adult I. ricinus ticks collected from vegetation in south-western Slovakia were added to a panel of cell lines derived from I. ricinus and Ixodes scapularis embryos. The cultures were monitored by preparation and examination of Giemsa-stained cytocentrifuge smears at intervals over the subsequent 16-18 months. Spiroplasma-like microorganisms were detected in cultures of both tick species after 2-3 months and subcultured onto fresh, uninfected cells of the appropriate cell line up to seven times. Molecular analysis using PCR assays targeting fragments of the 16S rRNA, ITS and rpoB genes confirmed the identity of the microorganisms as a Spiroplasma sp., with between 98.9% and 99.5% similarity to S. ixodetis. The sequences of the spiroplasmas isolated from three different pools of ticks collected on two different occasions were identical for all three genes tested.
Project description:The U.S. lineage, one of the major clades in the Babesia microti group, is known as a causal agent of human babesiosis mostly in the northeastern and upper midwestern United States. This lineage, however, also is distributed throughout the temperate zone of Eurasia with several reported human cases, although convincing evidence of the identity of the specific vector(s) in this area is lacking. Here, the goal was to demonstrate the presence of infectious parasites directly in salivary glands of Ixodes persulcatus, from which U.S. lineage genetic sequences have been detected in Asia, and to molecularly characterize the isolates. Five PCR-positive specimens were individually inoculated into hamsters, resulting in infections in four; consequently, four strains were newly established. Molecular characterization, including 18S rRNA, ?-tubulin, and CCT7 gene sequences, as well as Western blot analysis and indirect fluorescent antibody assay, revealed that all four strains were identical to each other and to the U.S. lineage strains isolated from rodents captured in Japan. The 18S rRNA gene sequence from the isolates was identical to those from I. persulcatus in Russia and China, but the genetic and antigenic profiles of the Japanese parasites differ from those in the United States and Europe. Together with previous epidemiological and transmission studies, we conclude that I. persulcatus is likely the principal vector for the B. microti U.S. lineage in Japan and presumably in northeastern Eurasia. IMPORTANCE:The major cause of human babesiosis, the tick-borne blood parasite Babesia microti, U.S. lineage, is widely distributed in the temperate Northern Hemisphere. However, the specific tick vector(s) remains unidentified in Eurasia, where there are people with antibodies to the B. microti U.S. lineage and cases of human babesiosis. In this study, the first isolation of B. microti U.S. lineage from Ixodes persulcatus ticks, a principal vector for many tick-borne diseases, is described in Japan. Limited antigenic cross-reaction was found between the Japan and United States isolates. Thus, current serological tests based on U.S. isolates may underestimate B. microti occurrence outside the United States. This study and previous studies indicate that I. persulcatus is part of the B. microti U.S. lineage life cycle in Japan and, presumably, northeastern Eurasia. This report will be important for public health, especially since infection may occur through transfusion, and also to researchers in the field of parasitology.